Exponential Growth, Decay, and Compound Interest Summer 2023

Rayan Ibrahim
Math 151-901

Contents

9 Compound Interest 1
9.1 Introduction 1
9.2 Compound Interest Formula - Discrete 2

9 Compound Interest

In this chapter we will learn about compound interest.

9.1 Introduction

Recall: when we want to compute a percentage of a number, we multiply the number by the percentage in decimal form. For example, 15% of 20 is $(0.15)(20)=3$. To convert from percent to decimal, we divide by 100 .

Let x be a number. If we say x has increased by 4%, then what is the new value? We convert 4% to decimal: 0.04 . Then we add 4% of x to x :

$$
x+0.04 x \text {. }
$$

We can combine these terms, though, and write $(1+0.04) x=1.04 x$.

Example - Exponential Growth

1. Sandy's salary increases by 15% from $\$ 15,000$. What is her current salary?

Here our rate is 15%, which we convert to 0.15 . Our principal, or starting value, is $\$ 15,000$. To get the new value, we compute

$$
\$ 15,000+(0.15)(\$ 15,000)=(1.15)(\$ 15,000)=\$ 17,250 .
$$

Notice here we kept track of our units. Our final answer is in dollars.
2. Suppose Jane borrows $\$ 3,000$ at an interest rate of 3% compounded yearly. Assume no payments are made on the loan.
(a) Find the amount owed after 1 year.

Here again we have a rate of 3%, or in decimal 0.03 . The interest is compounded yearly, and we are asked to find the amount owed after 1 year. Our principal is $\$ 3,000$. Then $(1.03)(\$ 3000)=\$ 3090$.
(b) Find the amount owed after 2 years.

To find the amount owed after 2 years, we must take the amount owed after 1 year and repeat the computation. Notice that we don't just add $\$ 90$. That is, the answer is not $\$ 3000+(0.03)(\$ 3000)+(0.03)(\$ 3000)$. We compute:

$$
(1.03)(\$ 3090)=\$ 3182.70
$$

(c) Write a general formula for the amount Jane owes after t years, assuming no payments are made.
Notice, with each passing year, we take the last years value and multiply by 1.03 to compute a 3% increase. In (a) we saw after one year she owed $(1.03)(\$ 3000)$. After two years she owed (1.03)(\$3090), or more generally, $(1.03)[(1.03)(\$ 3000)]=(1.03)^{2}(\$ 3000)$. In general, after t years Jane will owe $(1.03)^{t}(\$ 3000)$.

9.2 Compound Interest Formula - Discrete

To calculate the final amount in a compound interest problem where things grow discretely (the interest accrues a defined number of times per year), we use the following formula.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

- A is the final amount.
- P is the initial amount or initial principal.
- r is the interest rate in decimal form. For example, 15% is 0.15 , or 4% is 0.04 .
- n is the number of times interest is applied per time period.
- t is the number of time periods elapsed.

For our purposes, t is the number of years and n is the number of times interest is applied per year. We have special keywords for n. For example

- Compounded
- yearly: $n=1$
- semiannually: $n=2$.
- quarterly: $n=4$
- monthly: $n=12$
- daily: $n=365$

In compound interest word problems, one is tasked with identifying given values and substituting the given values into the formula properly.

Example - Compound Interest

SS

