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8 Logarithms

In this chapter, we introduce logarithms.

8.1 Introduction

We are already familiar with exponents, and certain exponential equations. For exam-
ple, 52 = 25, or 33 = 27. We may ask ourselves, given an exponent k, what is bk? We
know when we see 52, we must multiply 5 by itself twice and obtain 25. Using our
exponent rules, we are able to simplify and evaluate expressions with exponents.

But now, suppose instead we are given the base and the result, but not the exponent.
For example, consider the equation

4x = 16.

How do we find x? In this case it is not too hard, as one can brute force there way
to the answer x = 2. However, as we’ll see, we need heavier machinery to eventually
handle some more complicated equations.
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Here is where logarithms come in.

y = logb(x).

This is read as “y equals log base b of x.” This expression translates to the following:
“y is the power that we must raise b to in order to get x.” Or, if we are asked to
evaluate something like logb(x) we ask ourselves “to what power must we raise b to in
order to get x.” The keen-eyed student will notice that logarithms are the inverses of
exponential functions. Here b is the base, and b is always positive. If b is not written,
we assume that b = 10.

Let’s look at a few examples:

Example – Logarithm Basics
What value of y makes the following equations true?

1. y = log2(16)

2. y = log2
(
1
4

)
3. y = log5(25)

For (1), we ask ourselves: “to what power must we raise 2 to in order to get 16.”
In other words, we are solving the equation 2y = 16 for y. The solution is 4.
For (2), we ask ourselves: “to what power must we raise 2 to in order to get
1
4
? Again, this is like solving the equation 2y = 1

4
. Here the solution is −2!

Notice that we obtained a negative number. This makes sense; 1
4
is a fraction, so

22 = 4, however we must remember to flip (make the exponent negative to get
the fraction.)
For (3), the solution is 2. So we may complete the equations by substituting the
values we found for y.

1. 4 = log2(16)

2. −2 = log2
(
1
4

)
3. 2 = log5(25)

Often one finds it helpful to convert mathematical expressions into english words
when dealing with logarithms. So, in math:

by = x ⇐⇒ logb(x) = y.

On the left “b raised to the y power yields x”, and on the right, “y is the power that
we waise b to in order to obtain x.” Via this reasoning, one can convert between
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exponential and logarithmic equations without doing algebra. We’ll see with logarithm
properties that there is another way.

On a final note, notice: while logb(x) can evaluate to a negative number like we saw
with log2(1/4), we cannot have a negative number as an input. That is, log2(−2) is
undefined. There is no exponent that, when given to 2, yields −2. In general, for a
positive base b, there is no exponent which makes it negative. In particular, logb(0) is
undefined; there is no exponent which causes by = 0.

8.2 Properties of Logarithms

Here we cover the properties of logarithms. There are three:

Name Property Example

Product Rule logb(p) + logb(q) = logb(p · q) log2(4) + log2(4) = log2(16)

Quotient Rule logb(p)− logb(q) = logb(p/q) log2(8)− log2(4) = log2(2)

Exponent Rule logb(p
q) = q logb(p) log3(27

2) = 2 log3(27)

The reader is encouraged to calculate the values in the examples given in the table
to verify each rule.

8.2.1 Converting Between Exponential and Logarithmic Equations

Before we look at examples, let’s get back to the point about converting exponential
equations to logarithmic equations and vice versa. If by = x, then we can take the log
of both sides:

by = x

logb(b
y) = logb(x)

y logb(b) = logb(x) (Exponent Rule)

y = logb(x) (logb(b) = 1)

All we needed was the exponent rule and the fact that logb(b) = 1 for any b; the
power that we must raise b to in order to get b itself is 1. Similarly, if we want to
convert y = logb(x) into an exponential equation, we make each side an exponent of b
and solve.

y = logb(x)

by = blogb(x)

by = x (blogb x = x)
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Here, we relied on the fact that for any base b we have blogb(x) = x. Loosely, the b
and logb cancel; however what is actually going here is logb(x) is the exponent we raise
b to in order to get x. So the expression blogb(x) is a bit circular; we obtain the exponent
we raise b to in order to get x, then directly raise b to that exponent.

Let us do some examples.

Example – Converting Equations

1. If log10(y) = 2, what does y equal?

Here, we can solve using algebra, or english. In algebra, we make each side
an exponent of 10 since our base is 10:

log10(y) = 2

10log10(y) = 102

y = 102 (blogb(■)) = ■)

y = 100

In english the equation reads “the power we raise 10 to in order to obtain
y is 2”, allowing us to write y = 102.

2. Convert 34 = 81 to a logarithmic equation.

We have a base of 3, so let’s use log3.

34 = 81

log3(3
4) = log3(81)

4 log3(3) = log3(81) (Exponent Rule)

4 = log3(81) (log3(3) = 1)

3. Convert 4a = 12 to a logarithmic equation.

Here our base is 4.

4a = 12

log4(4
a) = log4(12)

a log4(4) = log4(12) (Exponent Rule)

a = log4(12) (logb(b) = 1)

Whether translating through english, or manipulating using algebra, with enough
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practice one should be comfortable solving exponential and logarithmic equations of
these kinds. So far we’ve only scratched the surface to get a better understanding of
what logarithms are, and how we can use them to solve equations involving unknown
variables as exponents (an x in the exponent.)

8.2.2 Expanding and Condensing Logarithmic Expressions

Similar to learning exponent rules, we must practice expanding and condensing loga-
rithmic expressions using our rules. Just like exponent rules, there are many ways to
combine and expand to get to a final result.

Expanding Logarithms

1. Write the expanded form of log
(
3
5
x2
)
.

log

(
3

5
x2

)
= log(3/5) + log(x2) (Product Rule)

= log(3)− log(5) + log(x2) (Quotient Rule)

= log(3)− log(5) + 2 log(x) (Exponent Rule)

2. Write the expanded form of log
(

y4
3√
xz2

)
This one looks difficult, but if we know our exponent rules and keep our
head straight, it is a step by step process.

log

(
y4

3
√
xz2

)
= log(y4)− log(

3
√
xz2 (Quotient Rule)

= log(y4)− log((xz2)1/3) ( k
√
■ = ■1/k)

= log(y4)− log(x1/3z2/3) (Distribute Exponent)

= log(y4)− log(x1/3) + log(z2/3) (Product Rule)

= 4 log(y)− 1

3
log(x) +

2

3
log(z) (Exponent Rule)

As practice for condensing, take the end result of the previous examples and try to
condense them back to get the original equations. As a practice problem, show that

2 log(z) + 3(log(y)− 2 log(x)) = log

(
z2y3

x6

)
.

5



8.3 Solving Exponential and Logarithmic Equations

In this section we will see how we can use the fact that logarithms and exponentials
are inverses of each other to solve special equations. Early we saw, for example, when
we have a quadratic equation we can take the square root of two sides to solve the
equation:

(x+ 5)2 = 25√
(x+ 5)2 =

√
25

x+ 5 = 5

...

and similarly when solving a radical equation, we square both sides
√
x+ 4 = 3

(
√
x+ 4)2 = (3)2

x+ 4 = 9

...

In the case of radical equations, recall that checking our solutions is mandatory. We
will see similar behavior with exponentials and logarithms.

The idea with solving exponential equations (equations where unknown variables
are in the exponent) is to use the properties of logarithms, in particular the exponent
property, to isolate the unknown variable.

Example – Solving Exponential Equations Using Logarithms

1. 5ex+2 = 2

Here we have e, known as Euler’s constant. The number e is an irrational
number, approximately 2.7. Like many other special constants, we assign
it a special letter. In this equation, let us use loge(x) = ln(x), the natural
log.

5ex+2 = 15

ex+2 = 3 (Isolate the exponential)

ln(ex+2) = ln(3)

(x+ 2) ln(e) = ln(3)

x+ 2 = ln(3) (ln(e) = 1)

x = ln(3)− 2

We cannot simplify any longer, we leave our solution in exact form.

6



2. Solve for y: 5y+3 = 6.

Here we have a single exponential term with a base of 5. So let’s “take the
log of both sides”, with the base of our logarithm as 5.

5y+3 = 6

log5(5
y+3) = log5(6)

(y + 3) log5(5) = log5(6) (Exponent Rule)

y + 3 = log5(6) (logb(b) = 1)

y = log5(6)− 3 (logb(b) = 1)

We could have used log with any base. The solution we obtained, y =
log5(6)− 3, is in exact form. We simplified it as best we can.

3. Solve for x: 124x = 5−x+3

Let’s use the natural log, ln here, since we have two different bases and we
can’t be sure things will simplify nicely.

124x = 5−x+3

ln(124x) = ln(5−x+3)

4x ln(12) = (−x+ 3) ln(5) (Exponent Rule)

4x ln(12) = −x ln(5) + 3 ln(5) (Distribute)

4x ln(12) + x ln(5) = 3 ln(5)

x(4 ln(12) + ln(5)) = 3 ln(5) (Factor x)

x =
3 ln(5)

4 ln(12) + ln(5)

Now let’s look at logarithmic equations.

Example – Solving Logarithmic Equations

1. Solve for x: log5(−2x+ 10) = 2.

In equations with logs, we can make both sides of the equation an exponent
of a particular base. Here, the base of the log term is 5. This comes from
the fact that if x = y, then bx = by.
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log5(−2x+ 10) = 2

5log5(−2x+10) = 52

−2x+ 10 = 25 (blogb(x) = x)

−2x = 15

x = −15/2 or − 7.5

Plugging in to check our work:

log5(−2(−7.5) + 10) = 2

log5(15 + 10) = 2

log5(25) = 2

2 = 2 ✓

2. Solve for x: log5(x+ 4) = 1− log5(x+ 8).

Now we have a logarithmic equation with two logs, but they each have the
same base. We use our logarithm properties to solve the equation; at each
step there is only one logical step forward.

log5(x+ 4) = 1− log5(x+ 8)

log5(x+ 4) + log5(x+ 8) = 1

log5((x+ 4)(x+ 8)) = 1 (Product Rule)

5log5((x+4)(x+8)) = 51

(x+ 4)(x+ 8) = 5

x2 + 12x+ 32 = 5

x2 + 12x+ 27 = 0

(x+ 3)(x+ 9) = 0

Notice what we’ve done here. We combined the log terms into one term
by using the Product Rule, which reduced the problem to something we
already know how to solve (a logarithmic equation with one logarithm.)
Then, we reduce the equation further to a quadratic equation. The two
possible solutions are x = −3 and x = −9. Let’s check our solutions.

Check x = −3.

log5(x+ 4) = 1− log5(x+ 8)

log5((−3) + 4) = 1− log5((−3) + 8)

log5(1) = 1− log5(5)

0 = 0 ✓

Check x = −9.

log5((−9) + 4) = 1− log5((−9) + 8)

log5(−5) = 1− log5(−1) ✗
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Notice that x = −9 is not a solution! It is mandatory to check solutions
when working with logarithmic equations. In particular, we must
check solutions when we use the product rule to combine logs, as we may
introduce extraneous solutions.

8.4 The Logarithmic Graph

Now we consider the function f(x) = logb(x). As we’ve mentioned previously, the log
function f(x) = logb(x) is the inverse function of g(x) = bx; while exponentials take
exponents as inputs, logarithms take numbers as inputs and produce the exponent that
is needed to make the base equal to the number. Again, in math,

y = bx ⇐⇒ logb(y) = x.

Graphically, the inverse of a function is the reflection over the line y = x.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

f(x) = log2(x)

Figure 1: The function f(x) = log2(x) is depicted in bold, with the inverse f−1(x) = 2x

in gray.

Notice the base function characteristics:
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� Domain: (0,∞)

� Range: (−∞,∞)

� Vertical asymptote at x = 0.

� x-int (1, 0)

Knowing that the logarithmic functions are inverses of exponential functions, compare
the characteristics of f(x) = logb(x) and f−1(x) = bx. Notice how the domain and
range are swapped, among other things.

8.4.1 Transformations

Just as we’ve seen with exponentials, we can shift horizontally, vertically, and reflect.
We have

f(x) = a logb(x− h) + k.

Example – Translations of a Logarithm.
Consider the function f(x) = − log4(x+3)−2. Knowing our function translations,
we have a = −1 which is negative, h = −3, and k = −2. In other words

� a < 0: f(x) is log4(x) reflected over a horizontal axis.

� h = −3: f(x) is log4(x) shifted 3 units to the left.

� k = −2: f(x) is log4(x) shifted 2 units downward.

So first let us apply the reflection.

10



−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Notice the domain, range, vertical asymptote, and x-int have not changed. This
will not be the case when we shift!
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Notice now that the vertical asymptote shifted 3 units to the left. The domain as
then changed from (0,∞) to (−3,∞) (just like vertical shifts change the range
of the inverse exponential functions.) The range remains unchanged (−∞,∞).
We’ve also gained a y-intercept which we did not have before.

As we can see, function translations affect the characteristics of log functions.
For f(x) = a logb(x− h) + k

� Domain: Solve for when x− h > 0. This gives when x > h. So (h,∞).

� Range: (−∞,∞).

� Vertical Asymptote at x = h.

8.4.2 Finding the Domain

We will now come back to something familiar; finding the domain of a composition of
functions. We know that logb(x) can only take positive inputs. That is, whenever we
have a log term logb(■), the inside ■ must be strictly greater than 0. In math, ■ > 0.
Some times we can tell what the domain is from understanding function translations,
but there is an algebraic way to solve for the domain.
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Finding the Domain of a Logarithmic Function

1. Let f(x) = log(−x+ 5).

The domain of log(■) is all the values satisfying the inequality ■ > 0. So
we solve:

−x+ 5 > 0

−x > −5

x < 5 (Multiply by −1, flip sign)

So the domain of f(x) is all x values such that x < 5. In interval notation,
this is (−∞, 5). Check to see what happens when we plug numbers outside
of this interval into f . What happens?

2. Let g(x) = log(x2 + 6x+ 8).

Again, we need the inside to be positive. So we need to solve x2+6x+8 > 0.
First we factor:

x2 + 6x+ 8 > 0

(x+ 2)(x+ 4) > 0

Now we have a quadratic inequality, or in particular we technically have
a rational inequality (with denominator 1). So we set (x + 2)(x + 4) = 0
to obtain critical values, then we find test values. Our critical values are
x = −2 and x = −4, both having open circles on our number line.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Interval Test Value Plug In T/F

(−∞,−4) −5 ((−5) + 2)((−5) + 4) = (−3)(−1) = 3 > 0 True

(−4,−2) −3 ((−3) + 2)((−3) + 4) = (−1)(1) = −1 ̸> 0 False

(−2,∞) 0 ((0)+2)((0)+4) = (2)(4) = 8 ¿ 0 True
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

3. Let f(x) = log
(

(x−1)
(x+2)(x−4)

)
Here we set the inside > 0. That is, we solve the inequality

x− 1

(x+ 2)(x− 4)
> 0.

The reader is encouraged to review rational inequalities and solve for the
domain. One should obtain, in interval notation, (−2, 1) ∪ (4,∞).
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