Inverses

Summer 2023

Rayan Ibrahim

Math 151-901

Contents

6 Inverse Functions 1
6.1 Finding the Inverse

6 Inverse Functions

Recall: A function is a rule which defines a relationship between an input variable, say x, and an unique output (often referred to as y). Functions can be given names, commonly f, g, or h. When we define a function, we may write something like

$$
f(x)=x+5
$$

which is read " f of x equals x plus 5." This function, whose name is f and input is x, takes the input and adds 5 to it, giving us an output. To evaluate a function at a specified value of x, say 5 , we write

$$
f(5)=(5)+5=10 .
$$

Everywhere we see an x, we substitute a 5 , then we simplify. Again, the output is unique; when we plug in a number for x, the function will output exactly one number. To test this on a graph, we use the vertical line test. If we can draw a vertical line on top of a graph, then that signifies that there are two y values which share the same x value; the given graph is not that of a function.

Now we define what it means for a function to be one-to-one.

Definition - One-to-One

A function is said to be one-to-one if for every output there is exactly one input.
To test if a given graph is that of a one-to-one function, we use the horizontal
line test; if we can draw a horizontal line on a graph where it crosses the graph twice, then there is an output value (a value on the y-axis) which comes from two different x values.

It is easy to get confused about what it means to be a function, and what it means to be a one-to-one function. A function takes an input and gives exactly one output. A function is one-to-one if every y-value comes from a unique x value. For example, let us look at the function $f(x)=x^{2}$.

Certainly $f(x)=x^{2}$ is a function. We plug in a number, we get exactly one number out. However, $f(x)=x^{2}$ is not one-to-one. The output 4 comes from two different x values. That is, $f(-2)=f(2)=4$. We can see that x^{2} horrifically fails the horizontal line test. However, if we are selective of the domain of our function, then we can make a one-to-one function. In the case of x^{2}, if we only consider the portion where $x \geq 0$, then we have a one-to-one function. In general, we can take "one half" of any quadratic function, as they are all symmetric about the vertex.

The concept of a one-to-one function comes in handy when we want to define an inverse for our function.

Definition - Inverse

Let f be a one-to-one function. Then f has an inverse function, denoted f^{-1} such that if $f(x)=y$, then $f^{-1}(y)=x$.

In words, while f takes inputs and gives outputs, f^{-1} takes outputs of f and returns the corresponding input. The domain of f^{-1} is the range of f. The range of f^{-1} is the domain of f.

One should reason with themselves to truly understand the definition; why is it that the compositions $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$.

Now we may understand why the concept of one-to-one is important. The function $f(x)=x^{2}$ is not one-to-one; it does not have an inverse. If it had an inverse f^{-1}, then $f^{-1}(4)$ would need to output both -2 and 2 , and so f^{-1} would not be a function. However, if we specify that $f(x)=x^{2}, x \geq 0$, then f does indeed have an inverse $f^{-1}(x)=\sqrt{x}$.

6.1 Finding the Inverse

Again, the inverse takes y values and returns x values. That is, for every point (x, y) in the graph of f, we have the point (y, x) in the graph of f^{-1}.

Example - Given Coordinates of a Function

Let $g=\{(-8,0),(-4,5),(2,3),(3,4),(7,-4)\}$
Notice that g is a function; each x value comes with exactly one y value. We ask ourselves, is g one-to-one? We check, does each y value have its own, unique x
value. Indeed, each y value appears once and only once. Now we want to evaluate, say, $g^{-1}(3)$. Two coordinates have 3 in them, $(2,3)$ and $(3,4)$. However, we are evaluating $g^{-1}(3)$, and the inverse takes y values as inputs. In words, $g^{-1}(3)$ asks: "what value of x, when plugged into g, gives 3 ?" We see then that $g^{-1}(3)=2$, since $g(2)=3$.
With similar reasoning, we see that $g^{-1}(-4)=7$ or $g^{-1}(0)=-8$.

A list of coordinates is the first step. One half step and we begin to examine graphs.

Example - Inverse Given a Graph

Consider the following function:

The function depicted has domain $[-5,5]$ and range $[-5,4]$. We make a table of the (x, y) values:

x	$f(x)$
-5	4
-2	-3
5	-5

The inverse, $f^{-1}(x)$ takes y values and gives the x values; so we switch the coordinates.

x	$f^{-1}(x)$
4	-5
-3	-2
-5	5

Now we can plot our points, and connect them:

There is some geometric meaning here. The graph of a function, when reflected over the line $y=x$, yields the graph of the inverse. This is what is happening when we switch the x and y coordinates.

In general, some times we are not given such a nice graph. However, one can pick a few points on a sketch of a graph, swap the x and y coordinates, and sketch the inverse. Then, one checks their work by drawing $y=x$ and checking if the sketches are indeed reflections of each other.

Suppose instead of a set of coordinates or a graph, we are given an equation. To find the inverse of a function $f(x)=\square$ we

1. Write $y=$
2. Replace every instance of x with y, and every instance of y with x. We get $x=\boldsymbol{\square}$ where every x in \square is replaced with a y.
3. Solve for y in terms of x; isolate y with algebra. We will get a new equation of the form $y=$.
4. Replace y with $f^{-1}(x)$.

Example - Finding the Inverse From Equations

Let $f(x)=\frac{4 x+1}{7}$. Find f^{-1}.
We are given a line, which can be written as $f(x)=\frac{4}{7} x+\frac{1}{7}$. Following our procedure:

$$
\begin{array}{rlrl}
y & =\frac{4 x+1}{7} & & (f(x)=y) \\
x & =\frac{4 y+1}{7} & (y=x) \\
7 x & =4 y+1 & \\
7 x-1 & =4 y & \\
\frac{7 x-1}{4} & =y & & \\
\frac{7 x-1}{4} & =f^{-1}(x) & \text { Solve for } y)
\end{array}
$$

We can check our answer with some specific values. Let $x=5$. Then $f(2)=$ $\frac{4(5)+1}{7}=\frac{21}{7}=3$. Now when we evaluate $f^{-1}(3)$ we should get 2 . Indeed:

$$
\begin{aligned}
f^{-1}(3) & =\frac{7(3)-1}{4} \\
& =\frac{20}{4} \\
& =5 .
\end{aligned}
$$

The reader is encouraged to check other values of x.

Let us do another example with some more involved algebra.

Example - Finding the Inverse (Harder)

Let $f(x)=\frac{3 x}{5 x+1}$. Find $f^{-1}(x)$.

$$
\begin{array}{rlr}
y & =\frac{3 x}{5 x+1} & \\
x & =\frac{3 y}{5 y+1} & \text { (Clear Denominator) } \\
x(5 y+1) & =3 y & \text { (Distribute } x \text {) } \\
5 x y+x & =3 y & \text { (Move } 3 y \text { left and } x \text { right.) } \\
5 x y-3 y & =-x & \text { (Factor } y \text {) } \\
y(5 x-3) & =-x & \text { (Solve for } y \text {) } \\
y & =\frac{-x}{5 x-3} & \\
f^{-1}(x) & =\frac{-x}{5 x-3} &
\end{array}
$$

Summary

List of things you need to know.

- A one-to-one function is a function where each output has a unique input.
- Use the horizontal line test on a graph to test if a function is one-to-one
- The inverse f^{-1} of a function f takes outputs $y=f(x)$ and produces inputs $x=f^{-1}(y)$.
- A function has an inverse if and only if it is one-to-one.
- The domain and range of an inverse is the range and domain of the function, respectively.
- To find the inverse of a function from its equation, write the equation in the form $y=$, change every x to y and every y to x, then solve for y.

