Compositions
 Summer 2023

Rayan Ibrahim
Math 151-901

Contents

5 Composition of Functions 1
5.1 Evaluating Compositions 1
5 5.2 Recognizing Compositions 4
5.3 Domain of Compositions 5

5 Composition of Functions

In this chapter we will learn about composition of functions.
Given two functions, we may compose them; one function may act as an input of another. Let $f(x)$ and $g(x)$ be two functions.

We write a composition as $f(g(x))$ or $g(f(x))$, read as " f of g of x " and " g of f of x " respectively. An alternate notation of $f(g(x))$ is $(f \circ g)(x)$, which can be read as " f composed with g evaluated at x." T

To evaluate the composition $f(g(x))=(f \circ g)(x)$, we first evaluate $g(x)$, then we plug the result in to $f(x)$. Note, it is not always the case that $f(g(x))=g(f(x))$. In other words, the order of composition matters. To get the notation straight:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
(g \circ f)(x) & =g(f(x))
\end{aligned}
$$

5.1 Evaluating Compositions

Let's do an example with some concrete functions.

Example - Evaluating Compositions Let $f(x)=x+5$ and $g(x)=x^{2}+2$. Then

$$
\begin{aligned}
& f(g(x))=\left(x^{2}+2\right)+5=x^{2}+7 \\
& g(f(x))=(x+5)^{2}+2=x^{2}+10 x+27
\end{aligned}
$$

Notice how $f(g(x)) \neq g(f(x))$.
We can compute some values for the compositions. For example, for $f(g(2))$ we compute $g(2)=(2)^{2}+2=6$, then plug 6 into f, so

$$
f(g(2))=f\left(2^{2}+2\right)=f(6)=(6)+5=11
$$

Or, like above, we can write the composition in its general form, such as $f(g(x))=$ $x^{2}+7$ and then evaluate. Here are some examples, showing the many ways we can compute a composition of functions.

- $(g \circ f)(2)=((2)+5)^{2}+2=(7)^{2}+2=51$
- $g(f(10))=((10)+5)^{2}+2=(15)^{2}+2=227$
- $(f \circ g)(1)=f(g(1))=f\left((1)^{2}+2\right)=f(3)=(3)+5=8$

Try to work out the following on your own. Let $p(x)=\sqrt{x+1}$ and $q(x)=x^{2}+5$. Show that

- $(p \circ q)(x)=\sqrt{x^{2}+6}$
- $(q \circ p)(x)=x+6$

We may also evaluate compositions from a table.

Example - Compositions With Tables Consider the following table of values for two functions r and q.

x	$r(x)$	$q(x)$
1	4	12
2	3	10
3	1	5
4	2	14

Compute $q(r(2))$ and $q(r(4))$.

To evaluate these, we first must evaluate the inside. So

- $q(r(2))$: First we evaluate $r(2)$, which from the table we know is 3 .

x	$r(x)$	$q(x)$
1	4	12
$\mathbf{2}$	$\mathbf{3}$	10
3	1	5
4	2	14

So $q(r(2))=q(3)$. Looking at the third row, we know $q(3)=5$.

x	$r(x)$	$q(x)$
1	4	12
2	3	10
$\mathbf{3}$	1	$\mathbf{5}$
4	2	14

- $q(r(4))$: First we evaluate $r(4)$, which from the table we know is 2 . So $q(r(4))=q(2)$. Looking at the third row, we know $q(2)=10$.

Finally we can evaluate compositions via graphs. Note, it is always the same process. For any composition $(f \circ g)(x)=f(g(x))$, we first evaluate $g(x)$ to get a number, then we plug in that number to f. On a graph this is nothing new; given an x coordinate, we find the y coordinate on a graph of g, then use that y coordinate as an x coordinate in a picture of f.

Example - Compositions With Graphs

Consider two graphs below of f and g.

- To evaluate $f(g(2))$, we first evaluate $g(2)$. From the graph of g, we see that $g(2)=4$. So $f(g(2))=f(4)=3$.
- To evaluate $g(f(2))$, we first evaluate $f(2)$. From the graph of f, we see that $f(2)=2$. So $g(f(2))=g(2)=4$.

5.2 Recognizing Compositions

As we've seen, given two functions, there are two ways we can compose them. We can also reverse the process; given a single function, we can recognize and write it as a composition of functions. Any function f is a composition of itself and the identity function $g(x)=x$. We've been writing functions all along as trivial compositions; $f(x)$ is " f of x ", where x is itself a function (a boring one, but still a function!) So a composition is not always unique, that is, it is possible that a function can be written as a composition in more than one way.

Example - Recognizing Compositions

The function $f(x)=(x-2)^{4}+3$ is a composition $h(g(x))$ where $g(x)=x-2$ and $h(x)=x^{4}+3$. We can check this:

$$
h(g(x))=h(x-2)=(x-2)^{4}+3 .
$$

One will require a bit of creativity and intuition when recognizing a composition. It may be helpful to think of needing one "outside function" and one "inside function". Here, the outside function is $x^{4}+3$ and the inside function is $x-2$.

Taken together:

$$
f(x)=(x-2)^{4}+3
$$

We could have also set $h(x)=(x-2)^{4}$ and $g(x)=x+3$, and then $f(x)=g(h(x))$ (check this yourself). In colors,

$$
f(x)=\left((x-2)^{4}\right)+3
$$

Suppose $H(x)=7 \sqrt{x}-4$. Then we find $f(x)=7 x-4$ and $g(x)=\sqrt{x}$ so that

$$
f(g(x))=f(\sqrt{x})=7(\sqrt{x})-4=H(x)
$$

In general, when given a function and asked for a composition, we want to find an "inner" function and an "outer" function, then we can check our composition. Another way to think about it is: we find an inner function, and replace it with an x. The resulting function is the outer function. For example

$$
f(x)=\sqrt{x+5}+2
$$

We can make $x+5$ the inner function, and replacing it with an x we get an outer function $\sqrt{x}+2$.

5.3 Domain of Compositions

Lastly, let's look at the domain of a composition. Consider a composition $f \circ g$. The domain of $f \circ g$ is all inputs x such that x is in the domain of g and $g(x)$ is in the domain of f. That is, there are two things to check; the validity of an input x for $f \circ g$ relies on g, so that the output $g(x)$ is defined, and further, $g(x)$ must be in the domain of f so that $f(g(x))$ is defined. This all sounds a bit confusing, so let us do some examples.

Example - Domain Let $g(x)=x^{2}-1$ and $h(x)=\sqrt{x-6}$. Let's find the composition $g \circ h$ and its domain.

$$
(g \circ h)(x)=g(\sqrt{x-6})=(\sqrt{x-6})^{2}-1
$$

Notice, we may simplify further to obtain $(g \circ h)(x)=(x-6)-1=x-7$. However, notice that by simplifying, one would incorrectly assume that the domain of $(g \circ h)$ is all real numbers. However, if we write $g \circ h$ in the non simplified form $(g \circ h)(x)=(\sqrt{x-6})^{2}-1$, we may notice that we cannot have any number x less than 6 as an input, otherwise $\sqrt{x-6}$ would be undefined. That is, the domain of h, namely $[6, \infty)$ plays an important role here. Since the range of $\sqrt{x-6}$ is all real numbers, and the domain of g is all real numbers, we do not need to worry
about the output $h(x)$. So the domain of $g \circ h$ is $[6, \infty)$. In total we have

$$
\begin{aligned}
& (g \circ h)(x)=x-7 \\
& \text { Domain: }[6, \infty)
\end{aligned}
$$

Let's do a more complicated example.

Example - Domain (Harder)

Consider the functions $f(x)=\frac{x}{x+1}$ and $g(x)=\frac{11}{x}$. Find and simplify $(f \circ g)(x)$. Then, find the domain.
At this point, we should be able to evaluate a composition. Here it's a bit of work; the algebra can be tricky!

$$
\begin{array}{rlr}
(f \circ g)(x) & =f(g(x)) & \\
& =f\left(\frac{11}{x}\right) & \\
& =\frac{\left(\frac{11}{x}\right)}{\left(\frac{11}{x}\right)+1} & \\
& =\frac{\left(\frac{11}{x}\right)}{\frac{11}{x}+\frac{1}{1} \cdot \frac{x}{x}} & \text { (Combine terms, LCD) } \\
& =\frac{\left(\frac{11}{x}\right)}{\frac{11+x}{x}} & \\
& =\left(\frac{11}{x}\right)\left(\frac{x}{11+x}\right) & \\
& =\frac{11}{11+x} &
\end{array}
$$

Now note, we have a rational function. The domain is not simply obtained from finding values for which the denominator is not equal to 0 . That is, the domain is not simply $(-\infty,-11) \cup(-11, \infty)$. This is a part of the domain of $(f \circ g)$. To find the domain, we go back to when we plugged $g(x)$ inside of f :

$$
f(g(x))=\frac{\left(\frac{11}{x}\right)}{\left(\frac{11}{x}\right)+1} .
$$

In this form, we find values of x which we must exclude from the domain. First, we have $\frac{11}{x}$ in the equation. This implies that $x \neq 0$, as then the function would
be undefined. Notice that this issue does not appear in the simplified version of the composition! Then we notice that we have a rational function, so we must check the denominator:

$$
\begin{aligned}
\frac{11}{x}+1 & \neq 0 \\
\frac{11}{x} & \neq-1 \\
11 & \neq-x \\
-11 & \neq x
\end{aligned}
$$

So we have two excluded values, -11 and 0 . Thus the domain of the composition is $(-\infty,-11) \cup(-11,0) \cup(0, \infty)$.

The above example is some work, but one needs to keep their head straight and obey algebra rules.

Example - Domain

Let $p(x)=\sqrt{x+1}$ and $q(x)=x^{2}+5$. Find $(q \circ p)(x)$ and find the domain.
We evaluate:

$$
\begin{aligned}
(q \circ p)(x) & =q(p(x)) \\
& =q(\sqrt{x+1}) \\
& =(\sqrt{x+1})^{2}+5 \\
& =x+1+5 \\
& =x+6 .
\end{aligned}
$$

Again, while $(q \circ p)(x)=x+6$, a line, the domain is not $(-\infty, \infty)$. We focus on when we plugged in:

$$
(\sqrt{x+1})^{2}+5
$$

Here, we have to make sure that $\sqrt{x+1}$ is defined. An even root function is defined only when the inside evaluates to a number greater or equal to 0 . That is in this case, $\sqrt{\square}$ is only defined when $\square \geq 0$. So we solve $x+1 \geq 0$ which yields $x \geq-1$. So in interval notation our domain is $[-1, \infty)$.

Suppose we are given a function already composed:

Example - Domain of a Complicated Function

Let

$$
f(x)=\sqrt{\frac{x-2}{(x-5)(x-3)}}
$$

Now here, one needs to reason through. What do we know:

- The domain of any square root function $\sqrt{\square}$ contains all x values which satisfy $\square \geq 0$.
- There is a rational function inside the square root. We need to ensure that we find the excluded values; find the x values which make the denominator 0 .

Thus, we need to solve $\frac{x-2}{(x-5)(x-3)} \geq 0$. Luckily, we've learned this before with rational inequalities. Setting the numerator equal to 0 we obtain a closed circle at $x=2$, and setting the denominator equal to 0 we obtain open circles at $x=5$ and $x=3$. We find test values, and end up with (this work is left to the reader):

The domain in interval notation is $[2,3) \cup(5, \infty)$.

Summary

List of things you need to know.

- Compositions are written in two ways $(f \circ g)(x)=f(g(x))$.
- Evaluate compositions of functions for certain values, or give a general formula.
- To find the domain of a composition, find excluded values when you plug in a function. Do not find the domain simply based on the simplified version of a composition.

