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5 Rational Equations, Inequalities, and Functions

In this chapter we will go over how to solve rational equations, rational inequalities,
and how to understand the behavior of rational functions.

5.1 Rational Equations

Consider the following equation:
1

x
= 0. (1)

Equation 1 is a rational equation. Notice that the equation has no solution; any
value other than 0 for x will lead to a nonzero number, and x = 0 cannot be a solution,
since 1

0
is undefined. In this case we say that x = 0 is an excluded value; a value that

cannot be a solution to the original equation. In a rational equation, the excluded
values will come from setting the denominators equal to 0.

Of course, it is not always the case that rational equations have no solutions. How-
ever, we must be weary of excluded values, that is, we may obtain a plausible solution
x through the use of some algebra techniques, however x may cause some term in the
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original equation to be undefined. This is very similar to equations with radicals. Let’s
see an example.

Example – Excluded Values Matter. Solve the following equation for x:

− 2

x+ 5
= − 8

4x+ 20
+ 3.

Solution. The first step is to always clear the denominators (by using the least
common denominator, or LCD, of all the fractions.) Notice that we can simplify
one of the denominators on the right hand side by factoring. Then we can clean
up a bit:

− 2

x+ 5
= − 8

4(x+ 5)
+ 3

− 2

x+ 5
= − 2

x+ 5
+ 3

Now that the denominators, namely (x+ 5), are the same on both sides, we can
multiply across by (x+ 5) for some nice cancellation. It is at this point we note
that x + 5 = 0 =⇒ x = −5, and so −5 is an excluded value. That is, after the
cancellation we can continue to solve

(x+ 5)

(
− 2

x+ 5

)
= (x+ 5)

(
− 2

x+ 5
+ 3

)
−2 = −2 + 3(x+ 5)

0 = 3(x+ 5)

0 = x+ 5

−5 = x.

By our algebra, we’ve deduced that x = −5 is a possible solution. However, since
x = −5 is an excluded value, this cannot be the case. Therefore the original
equation has no solution. Try to plug in −5 into the original equation.

So far we’ve only seen rational equations with linear denominators. We can have
equations with multiple solutions, and multiple excluded values. Let’s look at some
more difficult examples.
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Example – Quadratic Denominator. Solve the following equation for x:

1

x2 − 4
− 4

x− 2
=

1

x+ 2

Solution. Again, the first thing we want to do is clear denominators. We can
factor the quadratic denominator x2 − 4 to start simplifying.

1

(x− 2)(x+ 2)
− 4

x− 2
=

1

x+ 2

To clear the denominators, we must multiply by the LCD. Notice that we can
multiply across by (x + 2), then by (x − 2), canceling out all denominators like
so:

(x+ 2)(x− 2)

(
1

(x− 2)(x+ 2)
− 4

x− 2

)
= (x+ 2)(x− 2)

(
1

x+ 2

)

����(x+ 2)����(x− 2)

����(x− 2)����(x+ 2)
− 4(x+ 2)����(x− 2)

���x− 2
=

����(x+ 2)(x− 2)

���x+ 2

1− 4(x+ 2) = x− 2

Note our excluded values are x = 2 and x = −2. Solving this equation gives
x = −1, and since this value is not one of the excluded values, x = −1 is a
solution. Plug in x = −1 to the original equation to check.

Example – All Together Solve the following equation for x:

x

x− 7
− 28

x2 − 49
=

2

x+ 7
.

Solution. Following all the steps highlighted earlier, we can solve for x.
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x

x− 7
− 28

x2 − 49
=

2

x+ 7

x

x− 7
− 28

(x− 7)(x+ 7)
=

2

x+ 7
(Factor)

(x− 7)(x+ 7)

(
x

x− 7
− 28

(x− 7)(x+ 7)

)
= (x− 7)(x+ 7)

(
2

x+ 7

)
(LCD)

x(x− 7)(x+ 7)

x− 7
− 28(x− 7)(x+ 7)

(x− 7)(x+ 7)
=

2(x− 7)(x+ 7)

x+ 7
(Distribute)

x(x+ 7)− 28 = 2(x− 7) (Cancel)

x2 + 7x− 28 = 2x− 14

x2 + 5x− 14 = 0

Note the excluded values that came from factors in the denominators: (x + 7)
and (x− 7) give x = 7 and x = −7 as excluded values.
Solving the rational equation, we end up with a quadratic equation which we can
solve by factoring. We get (x+ 7)(x− 2) = 0, giving two solutions: x = −7 and
x = 2. Since one of our solutions is an excluded value, the final solution to the
original equation is x = 2.

5.2 Rational Inequalities

Now we focus our attention on rational inequalities. For example, there are infinitely
many solutions to

1

x
> 0.

The x values that make this inequality true are all positive real numbers, or x > 0. We
can express this in interval notation as (0,∞), or on a number line:

-5 -4 -3 -2 -1 0 1 2 3 4 5

Notice that we have an open circle at 0 to indicate that x is never 0.
Like rational equations, though, these can be much more complicated.
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Example – All Together
Solve the following inequality for x:

−2

5− x
≥ 1

x− 2
.

Solution. First, we move everything to one side. Let’s move the term on the
right to the left:

−2

5− x
− 1

x− 2
≥ 0.

Now, we want to combine both fractions. We do so by finding the least common
denominator. One simple way to think of this is to look at the denominator
of each term and ask “what is this term missing in the denominator that is
present in the other terms.” For example, the term −2

5−x
is missing a factor of

x− 2 in the denominator, and the term − 1
x−2

is missing a factor of 5− x in the
denominator. To add in the missing factors, we have to make sure we multiply
both the numerator and the denominator. We have

−2

5− x
· (x− 2)

(x− 2)
− 1

x− 2
· (5− x)

(5− x)
≥ 0.

Note, when dealing with rational inequalities, for the most part we want to keep
things in factored form. Now that the denominators are the same for each term,
we can combine the terms:

−2(x− 2)− (5− x)

(5− x)(x− 2)
≥ 0.

Simplify the numerator, so that we arrive at

−x− 1

(5− x)(x− 2)
≥ 0.

There is a method to the madness here. We now have the inequality in the form
■
■ ≥ 0. Solving this kind of inequality, in words, is solving the question “when
is this fraction positive,” while paying special attention to whether or not we
are also equal to 0. Remember: a fraction is positive when the numerator and
denominator are both positive or both negative. A fraction is negative when the
numerator and denominator have differing sign.
To solve this inequality, we set the numerator and denominator equal to 0 to find
critical values. Setting the numerator equal to 0 we have −x− 1 = 0 =⇒ x =
−1. Setting the denominator equal to 0 we have (5 − x)(x − 2) = 0, which is 0
when 5− x = 0 or when x− 2 = 0. From this we get x = 5 and x = 2 from the
denominator. Now we set up our labeled sign chart like so:
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Notice, the critical values coming from the numerator have a closed circle, while
the critical values coming from the denominator have an open circle. It is always
the case that critical values from the denominator yield an open circle, since the
denominator of a fraction can never equal 0 (undefined.) However for the critical
values from the numerator, we get an open circle if the inequality sign is < or >,
and a closed circle if the inequality sign is ≥ or ≤.
These critical values on the number line represent where each factor may possibly
change sign. Now all that’s left to do is check some test values in each interval
(−∞,−1), (−1, 2), (2, 5), and (5,∞).

Interval Test Value Plug In T/F

(−∞,−1) −2 −(−2)−1
(5−(−2))((−2)−2)

= 1
(7)(−4)

False

(−1, 2) 0 −(0)−1
(5−(0))((0)−2)

= −1
(5)(−2)

True

(2, 5) 3 −(3)−1
(5−(3))((3)−2)

= −4
(2)(1)

False

(5,∞) 6 −(6)−1
(5−(6))((6)−2)

= −7
(−1)(4)

True

We find test values in each interval, then plug them and check if the equality is
true. After we find which intervals satisfy the inequality, we can fill in the labeled
sign chart.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

We are done!

So, the steps to solving a rational inequality are as follows:

1. Move everything to one side so that the inequality has 0 one one side and terms
on the other.

2. Combine the terms by finding the least common denominator. Give each denom-
inator the factor(s) it is missing from the other denominators.
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3. We end up with an inequality like ■
■ ≥ 0 or ■

■ < 0.

4. Once combined, set the numerator and denominator equal to 0 to find critical
values.

� Numerator critical values: If the inequality sign is < or >, put an open circle.
If the inequality sign is ≥ or ≤, put a closed circle.

� Denominator critical values: Always put an open circle for each critical value
from the denominator.

5. There will now be several intervals on the number line. Find a test value for each
interval, plug the test value into the inequality, and see if the inequality is true.
Test values cannot be critical values.

5.3 Rational Functions

We can now talk about rational functions.

Definition (Rational Function)

A rational function is a function

f(x) =
N(x)

D(x)
=

anx
n + an−1x

n−1 + · · · a1x+ a0
bdxd + bd−1xd−1 + · · · b1x+ b0

,

where N(x) is a polynomial of degree n and D(x) is a polynomial of degree d. In
other words, a rational function is a ratio of polynomial functions.

In the definition the degree of the numerator or denominator is not specified; the
numerator may have higher degree than the denominator, they may be equal, and so
on. In Figure 1 we see some examples of rational functions and their graphs.

In this section we will examine characteristics of rational functions, including their
domain and range, horizontal, vertical, and slant asymptotes, and holes. We will refer
back to the functions in Figure 1 frequently as visual aids.

Definition (Asymptotes)

An asymptote is a line that acts as the limit for a curve; the curve can approach
the line and get infinitely close, but they may never meet.
Let f(x) be a rational function and a be a real number.

� A vertical asymptote of f(x) is a vertical line x = a where f(a) is undefined.

� A horizontal asymptote of f(x) is a horizontal line y = a where f(x) → a
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Figure 1: The function f(x) = 1/x (left) and g(x) = x2−1
x2+x−6

(right). The asymptotes of
the functions are dashed in blue.

as x → −∞ or x → ∞. A horizontal asymptote may be crossed, but as
soon as we observe far enough left or right, the function will get infinitely
closer to y = a but will not touch it.

� A slant asymptote (some times referred to as oblique) is an asymptote
y = mx+ b with a slope.

There are three types of asymptotes, and we will learn how to find each type.

5.3.1 Vertical Asymptotes

Recall excluded values from rational equations. Excluded values were values of x which
cause a term in an equation undefined. Specifically, they would cause ratios to be
undefined by yielding a 0 in the denominator. Excluded values of rational equations
represent vertical asymptotes (think of the rational terms of the equations as rational
functions.) That is to say: to find vertical asymptotes of a rational function,
we set the denominator equal to 0 and solve.

Example – Vertical Asymptotes Consider the functions in Figure 1.
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For f(x) = 1
x
, we can quickly see that x = 0 is the only vertical asymptote. For

g(x) = x2−1
x2+x−6

, we must set the denominator equal to 0 and solve.

x2 + x− 6 = 0

(x+ 3)(x− 2) = 0

So the equations of the vertical asymptotes for g(x) are x = −3 and x = 2. You
may verify this by looking at Figure 1.

Vertical asymptotes are always written in the form of an equation x = α. On a
graph, one can visualize them as dashed vertical lines.

5.3.2 Horizontal and Slant Asymptotes

Horizontal asymptotes are more involved. Let f(x) = N(x)
D(x)

where N is a polynomial of
degree n and D is a polynomial of degree d. The horizontal asymptotes will depend on
the relationship between the degrees of the numerator and denominator:

� If n > d, there is no horizontal asymptote.

� If n < d, there is a horizontal asymptote at y = 0.

� If n = d, then the horizontal asymptote is a ratio of the leading coefficients of the
numerator and denominator, i.e. y = an

bd
.

Example – Horizontal Asymptotes Looking at f(x) = 1
x
, notice the degree

of the numerator is 0 and the denominator is 1. Since 0 < 1, there is a horizontal
asymptote at y = 0.
For g(x) = x2−1

x2+x−6
, the degree of the numerator and denominator are both 2; they

are equal. Therefore there is a horizontal asymptote y = 1
1
= 1, since the L.C. of

N(x) is 1 and the L.C. of D(x) is 1.

Horizontal asymptotes are a special case of a broader class of asymptotes, slant
asymptotes. Horizontal asymptotes are lines with slope 0, but the slope can be
nonzero. If n = d + 1, then the rational function has a slant asymptote. In words:
if the degree of the numerator is exactly one more than the degree of the denominator,
there will be a slant asymptote. To find the slant asymptote, we perform long division,
and the equation is y = quotient.
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Example – Slant Asymptote Consider the function

f(x) =
x2 − x+ 1

x− 1
.

Here n = 2 and d = 1, and since n = d + 1 there must be a slant asymptote.
Find the equation for the slant asymptote.
Solution. To find the equation of the slant asymptote, we use polynomial long
division. We obtain

x2 − x+ 1

x− 1
= x+

1

x− 1
.

The quotient is x and the remainder is 1. The equation of the slant asymptote
is y = x.

One doesn’t have to memorize these rules if one understands what is really going
on. For example, if the degree of the denominator D(x) is larger than the degree of
the numerator N(x), then one can think of D(x) as growing “faster” than N(x), and
as x gets really large (or really small), the gap between N(x) and D(x) widens. As
this gap widens, the fraction N(x)/D(x) shrinks, as we are dividing a numerator by a
denominator which gets larger and larger. This is why if D(x) has larger degree than
N(x), that N(x)/D(x) has a horizontal asymptote at y = 0.

5.3.3 Holes of Rational Functions

It is important to note that there might be what we call “holes” in a rational function.
These are specific points for which a function is undefined. This happens when a
rational function is defined for us, but not simplified. Always remember, when you
are given a rational function, make sure to factor the numerator and denominator as
much as possible.

Example - Hole
Consider the rational function

f(x) =
2(x2 + 6x+ 8)

x2 − 4
.

When we factor the numerator and denominator we get

f(x) =
2(x+ 2)(x+ 4)

(x+ 2)(x− 2)
.
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Notice that we have (x + 2) in the numerator and the denominator. However,
notice what happens when we plug in x = −2:

f(−2) =
2((−2) + 2)((−2) + 4)

((−2) + 2)((−2)− 2)
=

2(0)(2)

(0)(−4)
.

We cannot say that 0 cancels out 0, since 0/0 does not make sense! Indeed, we
can evaluate 0/1, 0/2, and so on, but we cannot divide 0 into 0; it is undefined.
So while the factors x+2 in the numerator and denominators of f ‘cancel’ when
simplifying, as f is defined, we must make special note of this circumstance. We
set the canceling factor x+2 = 0, giving a hole at x = −2. The simplified version
of f is written

f(x) =
2(x+ 4)

x− 2
.

To find the y value of the hole, we plug in x = −2 into the simplified version of
f :

y =
2((−2) + 4)

(−2)− 2
= −1.

So we say: f(x) has a hole at (−2,−1), and we draw an open circle on the graph.
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5.3.4 Finding the Domain

Now we have all the tools we need for finding the domain. We think of it in the following
way: we start with the set of all real numbers, (−∞,∞), and then we cut out x values
for which the function is undefined. These x values are precisely the vertical asymptotes
and holes.

Let’s look at the functions from Figure 1.

Example – Domain
Let f(x) = 1/x and g(x) = x2−1

x2+x−6
. Refer back to Figure 1 for graphs of these

functions.
For f(x), we know there are no holes, but we do have a vertical asymptote at
x = 0. So x = 0 is not part of the domain. So we must cut it out of (−∞,∞).
Doing so yields (−∞, 0) ∪ (0,∞) in interval notation. On a number line:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

For g(x), we previously factored and found that g(x) = (x−1)(x+1)
(x−2)(x+3)

. Setting the
denominator equal to 0 we get two vertical asymptotes: x = 2 and x = −3.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

In interval notation, we get (−∞,−3) ∪ (−3, 2) ∪ (2,∞).

One more example that we saw earlier, this time with a hole.

Example – Domain with a hole
Let

f(x) =
2(x2 + 6x+ 8)

x2 − 4
=

2(x+ 2)(x+ 4)

(x+ 2)(x− 2)
=

2(x+ 4)

x− 2

As we discussed before, instead of a vertical asymptote, we get a hole at x = −2,
and we still have a vertical asymptote at x = 2. So the domain is: (−∞,−2) ∪
(−2, 2) ∪ (2,∞). On a number line:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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5.3.5 Intercept and Zero Behavior

Rational functions exhibit behaviors around the vertical intercepts and zeros. For

example, let’s take a look at the functions f(x) = a(x+1)2

(x−1)3
and g(x) = a(x+1)

(x−1)2
. (If you

are curious, a = 3 here, but that knowledge is not useful for what we are trying to
understand.)
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Notice that our examples both have the same x-intercept (−1, 0), and the same
vertical asymptote x = 1. However, notice the behavior of the functions. For f(x) on
the left of Figure ??, the sign of f(x) is the same on the left and right of (−1, 0); the
function bounces at (−1, 0). The behavior of f(x) (going to ∞ or −∞) around the
vertical asymptote x = 1 is different on each side; f(x) goes to −∞ as it approaches
from the left of x = −1, and goes to ∞ as it approaches from the right of x = −1.

Recall: after simplifying and dealing with holes, setting the numerator equal to 0
will give us x-intercepts, and setting the denominator equal to 0 will give us vertical
asymptotes. Similar to polynomials, we set each factor of the numerator or denominator
equal to 0. These factors have exponents, and thus we can assign multiplicities to not
only x-intercepts (zeros, roots, same thing) but also vertical asymptotes. Here are the
rules:

� If a vertical asymptote x = α has even multiplicity, then the function will behave
the same on both sides of x = α (either going to ∞ on the left and right, or going
to −∞ on the left and right).

� If a vertical asymptote x = α has odd multiplicity, then the function will behave
differently on both sides of x = α (either going to −∞ from the left and ∞ from
the right, or vice versa)
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� If a zero (α, 0) has even multiplicity, then the function will have the same sign on
both sides of (α, 0).

� If a zero (α, 0) has odd multiplicity, then the function will have different sign on
both sides of (α, 0).

Looking at our examples and we can understand how the rules apply. This functions
are purposefully similar, with only the multiplicities varying.
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x-intercept from
the factor (x+ 1)2.
Even multiplicity
→ same sign on
each side.

Vertical Asymp-
tote from the fac-
tor (x − 1)3. Odd
multiplicity → dif-
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each side.
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x-intercept from
the factor (x + 1).
Odd multiplicity
→ different sign on
each side.

Vertical Asymptote
from the factor
(x−1)2. Even mul-
tiplicity → same
behavior on each
side.

Summary

� To find the vertical asymptotes of a rational function, set the denominator
equal to 0 and solve.

– Vertical asymptotes are vertical lines indicating where the function
is undefined. They are written as x = α where α is a zero of the
denominator.

– The behavior of a rational function around a vertical asymptote is
determined by the multiplicity of the factor from which it came. Let
(x − α) be a factor in the denominator so that x = α is a vertical
asymptote. Recall the examples f(x) = 1/x and f(x) = 1/x2.

* If α has odd multiplicity, then the function behaves differently
to the left and right of x = α.

* If α has even multiplicity, then the function behaves the same
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to the left and right of x = α.

� Horizontal and Slant asymptotes. Let n be the degree of the numerator
and d be the degree of the denominator.

– if n = d + 1 (if the numerator has degree exactly one more than the
denominator), then the function has a slant asymptote. Find the equa-
tion of the slant asymptote y = mx+ b by polynomial long division.

– if n > d, there is no horizontal asymptote.

– if n = d, there is a horizontal asymptote. Divide the leading coefficient
of the numerator by the leading coefficient of the denominator to get
the equation y = c.

– if n < d there is a horizontal asymptote at y = 0.

� Holes - if a factor x− α cancels out after simplifying f(x), the graph may
have a hole at x = α.

– If, after simplifying, x = α ends up being a vertical asymptote, there
is no need to talk about a hole.

– Otherwise, plug in x = α into the simplified version of f to get the
y value of the hole. When graphing, there will be an open circle at
(α, y).

� Domain - Vertical Asymptotes and holes tell us what to exclude from the
domain. For example, if a function has vertical asymptotes at x = 1 and
x = −2, and a hole at x = 5, then the domain of f is, in interval notation,
(−∞,−2) ∪ (−2, 1) ∪ (1, 5) ∪ (5,∞).

� x-intercepts - set the numerator equal to 0. The multiplicity of an x-
intercept tells us whether the sign of the function is the same or different
to the left and right of the function. Let x = α be an x-intercept of f(x).

– If α has odd multiplicity, then the sign of f(x) on the left and right
of α differs (+/− or −/+.)

– If α has even multiplicity, then the sign of f(x) on the left and right
of α is the same (+/+ or −/−.)
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