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1 Introduction to Sequences

We will begin by introducing the notion of a sequence of numbers.

Definition (Sequence)

A sequence of numbers is an infinite list of numbers. We usually write the first
few numbers of the sequence, and from that the pattern should be obvious enough
(most of the time.) For example, the sequence of even numbers can be written
as:

0, 2, 4, 6, . . .

A number in the list, or sequence, is usually referred to as a term of the sequence.

It is important to know that it’s not always the case that someone can guess the
pattern with the first few terms. For example, let’s consider the representation

1, 3, 9, . . .

One might look at this and say that the sequence is the powers of 3, however they may
be mistaken. These three terms also happen to be the first three terms of the sequence
TN = 2N2 + 1. Observe:

N 0 1 2 3 4 · · ·

3N 1 3 9 27 81 · · ·

2N2 + 1 1 3 9 19 33 · · ·

As you’ve probably already guessed from the formulas above, we can represent
sequences in ways other than listing the first few terms. Above we defined an explicit
formula for each sequence. More on those later.

First, some notes on notation. When we refer to the terms of a sequence, we label
them with an upper case letter and a subscript. Common uppercase letters include T
(Term), P (Population), or A (Arithmetic). The subscript is the position in the list,
starting with the 0th position.

Example (Notation) Let’s look at the following sequence:

4, 7, 10, 13, . . .

We will use T to denote a term. So we have the first term as T0 = 4, the second
term as T1 = 7, the third term as T2 = 10, and the fourth term as T3 = 13.
Notice how the first term is written with a zero subscript, and in general the Nth
term is written as TN−1 with the subscript being one less. So the 100th term is
written as T99. This is because we start from 0.
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2 Arithmetic Sequences and Linear Growth

2.1 Introduction and Formulas

Let’s look at our sequence from the previous Example (Notation): 4, 7, 10, 13, . . . . This
sequence is called an arithmetic, or linear sequence.

Definition (Arithmetic Sequence)

An arithmetic sequence, also referred to as a linear sequence, is a sequence where
every pair of consecutive terms has a common difference. In other words, the
same number (the common difference) is added to each term to get to the next
term in the sequence.

We use the variable name d for the common difference. The easiest way to obtain
d is by the formula

d = T1 − T0.

Notice this is just taking the difference between the second term T1 and the first term
T0. If we know more terms, we could do T50−T49, as long as the terms are consecutive.
So for the above sequence 4, 7, 10, 13, . . . the common difference

d = T1 − T0 = 7 − 4 = 3.

Just to drive the point home,

d = T2 − T1 = 10 − 7 = 3,

and notice that adding 3 to each term does give the next.
As mentioned in the introduction, there are ways of representing a sequence without

writing the first few terms. We will learn of two ways, both of which are useful at
different times.

Definition (Recursive Formula)

A recursive formula will find a term of a sequence if we know the previous term.
For example, if we want to know the 10th term of a sequence, in order to use
the recursive formula we must know the 9th term.

The recursive formula for a linear sequence is

TN = TN−1 + d.

In english, this formula says “The Nth term is the previous term (the (N − 1)th
term) plus the common difference.” It’s using what we know about the common
difference, that is, we add d to a previous term to get to the next.
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Now let’s use the recursive formula on our sequence. We know that the fourth term,
T3 = 13, and our common difference d = 3. If we want to find T4 using the recursive
formula, we do

T4 = T3 + d = 13 + 3 = 16.

Now that we have T4, we can find T5 using the formula again:

T5 = T4 + d = 16 + 3 = 19.

The process can continue on forever.
What if we wanted to know the term T50 (the 51st term.) We would have to use

the recursive formula 45 times! This is where the second formula comes in.

Definition (Explicit Formula)

An explicit formula for a sequence will find a term of the sequence using only
information about its position (subscript).

For a linear sequence, the explicit formula is

TN = T0 + Nd.

In english: “Any term is equal to the first term plus the position of the term
times the common difference.” Notice how this looks like the formula for a line
y = mx + b, hence the name linear.

y︷︸︸︷
TN =

b︷︸︸︷
T0 +

x︷︸︸︷
N

m︷︸︸︷
d

Let’s see how to use this formula is useful to us.

Example (Applying the Explicit Formula, Arithmetic) Going back to
our sequence, if we want to find T50, we use the explicit formula. We know T0 = 4
and d = 3, so plugging in we have

T50 = T0 + Nd = 4 + (50)(3) = 154.

Using the explicit formula we find that the 51st term, denoted T50, is 154. Suppose
we want the 54th term. Then we do

T53 = T0 + Nd = 4 + (53)(3) = 163.

One last thing. What happens if we are given a number and need to figure out
which term it is in a sequence?.
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Question. The number 48 is what term of the sequence 4, 7, 10, 13, . . . ?

Solution. Another way to read this question is “for which N is TN = 49?” We
use the explicit formula and set up an equation. Let’s just write it down, then
analyze it:

TN︷︸︸︷
49 =

T0︷︸︸︷
4 +

Need
to

find︷︸︸︷
N ·

d︷︸︸︷
3 .

We want to know which term, so particularly the value N , that 49 is of the
sequence. If we solve the equation

49 = 4 + N · 3

45 = N · 3 (Subtract 4)

15 = N (Divide by 3)

So 49 is the 16th term, or T15 = 49 in the sequence. Let’s check our work:

T15 = 4 + (15)(3) = 4 + 45 = 49.

Try it on your own. Find out which term the numbers 82 and 142 for the sequence
4, 7, 10, 13, . . . . The answers should be N = 26 and N = 46 respectively.

Summary

An arithmetic sequence is a sequence with a common difference d between any
two consecutive terms.

• Recursive formula: TN = TN−1 + d, used for quickly finding terms close to
what we already know.

• Explicit formula: TN = T0 + Nd, used for quickly finding terms in much
higher positions than we already know. Also, given a number, we can use
the explicit formula to set up an equation and find out what term that
number is in the sequence.
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2.2 Linear Sums: Adding Terms Together

Sometimes we are interesting in finding the sum of the terms of a sequence. While we
can compute the sums of every other term, or, for example, every fourth term, we will
focus on adding up the first N terms of a sequence.

Sum Formula for Arithmetic Sequence

The formula for finding the sum of the first N terms of an arithmetic sequence is

N−1∑
i=0

Ti =

N terms︷ ︸︸ ︷
T0 + T1 + T2 + · · · + TN−1

(T0 + TN−1)N

2
.

The
∑

symbol is the capital version of the greek letter sigma, and it is used to
denote a sum of terms. So we read the above formula as “the sum from i equals
zero to N − 1 of Ti.” As an illustration, if we wanted the sum of the first five
terms of a sequence, it would be written as

4∑
i=0

Ti =

5 terms︷ ︸︸ ︷
T0 + T1 + T2 + T3 + T4 =

(T0 + T4)N

2
.

The main take away is that the
∑

notation is used to signify what is being
added, since if we’re adding together 100 terms we don’t want to write all that
out across the page! The right hand side of the equation is what we can use to
directly compute the sum, using the first added term, the last added term, and
the number of added terms as the only information.

Finally, as a kind reminder, T0 is the first term of the sequence, TN−1 is the Nth
term of the sequence, and N is the number of terms being added together.

Now seeing that altogether is a bit confusing, so let’s do an example.

Example (Sum of Arithmetic Sequence Terms) Consider our favorite
sequence 4, 7, 10, 13, . . . , or as we’ve found explicitly: TN = 4 + N · 3. Let’s do
something we can check easily.

Question. What is the sum of the first four terms?

Solution. Well, we can directly compute 4 + 7 + 10 + 13 = 34, but let’s test out
our formula. We have that T0 = 4, TN−1 = 13, and N = 4. So the equation looks
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like:
3∑

i=0

Ti = T0 + T1 + T2 + T3 =
(T0 + TN−1)N

2
=

(4 + 13) · 4

2
.

Notice that we want to know the sum of the first four terms, and the sum goes
from i = 0 to N−1 = 3 (so that’s four terms, T0, T1, T2, T3.) Now we can compute
the sum, obeying the order of operations:

3∑
i=0

Ti =
(4 + 13) · 4

2
=

(17) · 4

2
=

68

2
= 34.

What do you know, the formula works.

It’s always nice to do some simple examples to get our feet wet. Try working the
sum of the first four terms of the arithmetic sequence 1, 5, 9, 13 . . . . The answer should
be 28.

Now let’s do a complete example, which will be slightly different.

Example (Arithmetic Sequence from Scratch) Consider the sequence
92, 85, 78, 71, . . . . Find the sum of the first fifteen (15) terms.

Solution. We want the sum of the first 15 terms of the above sequence. In sigma
notation this is written as

14∑
i=0

Ai

(here we are using A for “arithmetic.”) According to our formula we have

14∑
i=0

Ai =
(A0 + A14)N

2
.

Well, we know A0 = 92, and the number of terms we are adding is N = 15.
All that remains is finding A14. Since we only have 4 terms of our sequence,
and we want the 15th term (A14), let’s find the explicit formula and use that
(remember: the recursive formula would require us to have A13 first to obtain
A14.)
In the previous section we found that the explicit formula for an arithmetic se-
quence is

TN = T0 + Nd.

We know N = 15 and A0 = 92, so we have

A14 = 92 + (15)d.
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All that remains is to find the common difference d, which we know as

d = A1 − A0 = 85 − 92 = −7.

Notice that d is negative, as we would expect for a sequence that is decreasing
(this is important, d is always a term minus the previous term.)
Now we have all the ingredients. Finally,

A14 = 92 + (15)(−7) = 92 − 98 = −6.

We are now ready to compute the sum. We have N = 15, A0 = 92, A14 = −6,
and so

14∑
i=1

Ai =
(A0 + AN−1)N

2

=
(A0 + A14)(15)

2

=
((92) + (−6))(15)

2

=
(86)(15)

2

=
1290

2
= 645.

Whenever we want to add up the first N terms of some sequence, we can directly
compute the sum once we find all the necessary ingredients like above. Try working the
sum of the first 17 terms of the sequence 4, 7, 10, 13, . . . . The answer should be 476.

Summary

The formula for finding the sum of the first N terms of an arithmetic sequence
is

N−1∑
i=0

Ti =

Main Part︷ ︸︸ ︷
(T0 + TN−1)N

2
.

Sometimes we will only be given some terms of the sequence, and will have to
work our way to the sum by first finding the common difference d and the last
term in the sum.
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2.3 Linear Growth Applications: Word Problems

Now that we’ve got arithmetic sequences in our toolbox, let’s apply our skills.

Example (Movie Theater Rows) A movie theater has 32 rows of seats.
There are 16 seats in the first row, 20 seats in the second row, and 24 seats in
the third row. Assume this pattern continues.

1. How many seats are in the 10th row?

2. How many seats are in the 32nd row?

3. How many total seats are there in the theater?

Solution. Let’s examine the information we have. We know the number of
seats in the first three rows, so let’s list them in order starting from the first row:
16, 20, 24, . . . . Ah-ha, there is a sequence! Let’s call our terms “R” for “row”,
where RN = the number of seats in row N . So R0 = 16, R1 = 20 and R2 = 24.
(Remember, the “third” row is R2, always 1 less in the subscript!)

So we must find the pattern to answer the questions. Assuming the pattern
continues as the question says, notice that the number of seats in each row goes
up by 4 from the previous row. This is our common difference, d. Indeed:

d = 20 − 16 = 4,

(or if you’d prefer d = 24 − 20 = 4.) Since we only have 3 terms and we want
the 10th and 32nd terms, it is best to find the explicit formula.

We know that d = 4 and R0 = 16, and the explicit formula for an arithmetic
sequence is

RN = R0 + Nd,

(remember, it’s explicit because the only thing we plug in is N when we find the
specific formula.) So here we have

RN = 16 + N · 4.

Now we can find the number of seats in the 10th and 32nd row:

R9 = 16 + (9)(4) = 52 (10th row)

R31 = 16 + (31)(4) = 140 (32nd row)

Well that takes care of 1. and 2., what about 3.? We are asked to find the
total number of seats in the theater. This is different than finding just one term!
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The problem states there are 32 rows total in the theater. So we want the sum
of the first 32 terms of our general sequence. From our sum formula we have

Total seats =
31∑
i=0

Ri =
(R0 + R31)N

2
.

This is “the sum of the number of seats of all 32 rows in the theater.” Notice it
goes from 0 to 31. We have R31 from 2. (note problems will not always be this
convenient), R0, and N . For the actual calculation:

(R0 + R31)N

2
=

(16 + 140)(32)

2
=

(156)(32)

2
= 2496 seats.

So in total we have:

1. How many seats are in the 10th row? – R9 = 52

2. How many seats are in the 32nd row? – R31 = 140

3. How many total seats are there in the theater? –
31∑
i=0

Ri = 2496 seats.

That wasn’t so bad. We had a scenario and came up with a sequence to solve some
questions. Let’s check out something a bit more complicated.

Example (College Enrollment) Beginning in the year 2009, scientists have
been tracking the amount of penguin poop in Antarctica. For 2009, there were
325 tons of poop, for 2010 there were 350 tons of poop, and for 2011 there were
375 tons of poop. Assume this pattern continues.

1. How many tons of penguin poop were produced in the years 2012, 2016,
and 2019?

2. Predict how many tons of penguin poop will be produced in 2030.

3. What is the total amount of penguin poop produced from 2009 to 2018 (“to
2018” means including that produced in 2018)?

For 1., we do exactly as before. First our sequence is 325, 350, 375, . . . . Let PN be
the tons of poop for year N , where the year 2009 corresponds to N = 0 (so 2009
is the first year, then 2010 is N = 1, and so on.) Any year’s subscript after 2009
will be that year minus 2009. For example, 2015 is P6, since 2015 − 2009 = 6,
So P0 = 325, P1 = 350, and P2 = 375. As you’ve probably already guessed, the
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common difference d = 25, since P1 − P0 = 350 − 325 = 25.

For the year 2012 (P3), we should use the recursive formula, since we already
know the answer for 2011 (P2). The recursive formula tells us

PN = PN−1 + d.

So we have
P3 = P2 + 25 = 375 + 25 = 400.

Easy enough? If we want to get to the next term, we just add the common
difference to the previous term, and here we knew what that previous term was.

We are not so lucky with the years 2016 (P7) and 2019 (P9). Let’s find the explicit
formula, given by PN = P0 +Nd. We know P0 = 325 and d = 25, so now we just
substitute for each N value.

P7 = 325 + (7)(25) = 500 (Year 2016)

P10 = 325 + (10)(25) = 575 (Year 2019)

To predict how many tons of penguin poop will be produced in 2030, we use
the explicit formula again, where 2030 is the term P21 (21 years after 2009, or
2030 − 2009 = 21. So there will be tons of poop in 2030.

P21 = 325 + (21)(25) = 850 (Year 2030)

Finally, we answer 3. The total amount of penguin poop produced from 2009 to
2018 is the sum of the first 10 terms of the sequence, starting with P0 (2009)
and ending with P9 (2018). From our sum formula what we want to find is

9∑
i=0

Pi =
(P0 + P9)N

2
.

We know P0 and N , but we must find P9. Using the explicit formula like above
we have

P9 = P0 + N(25) = 325 + (9)(25) = 550.

So in total, we have

9∑
i=0

Pi =
(325 + 550)10

2
=

(875)(10)

2
= 4375 tons.

That’s a lot of poop.
So we have

1. How many tons of penguin poop were produced in the years 2012, 2016,
and 2019? – 400, 475, and 575 tons respectively.
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2. Predict how many tons of penguin poop will be produced in 2030. – 850
tons

3. What is the total amount of penguin poop produced from 2009 to 2018 (“to
2018” means including that produced in 2018)? – 4375 tons.

3 Geometric Sequences and Exponential Growth

3.1 Introduction and Formulas

Previously we discussed arithmetic, or linear sequences and how they can be used to
represent “linear” growth. They main reason we say “linear” is because the “rule” to
arithmetic sequences say we add a common difference d to one term to get to the next.

Now let’s consider the sequence 5, 10, 20, 40, . . . . If we attempt to find a common
difference, we will fail. Notice, T1 −T0 = 10− 5 = 5, but T2 −T1 = 20− 10 = 10. Since
there is no common difference, this is not an arithmetic sequence.

We will now explore a new type of sequence, called a geometric sequence.

Definition (Geometric Sequence)

A geometric sequence, also referred to as an exponential sequence, is a sequence
with a common ratio r between any two consecutive terms. In order to get the
next term of a sequence, we multiply the previous term by r to get to the next
term. The formula for the common ratio is

r =
T1

T0

,

but just like the common difference, the ratio can be found using any two con-
secutive terms, e.g. r = T5

T4
.

Back to our sequence 5, 10, 20, 40, . . . . Without knowing about geometric sequences,
you would probably say the “rule” for this sequence is to double the previous term to
get to the next. Indeed, the common ratio

r =

T1︷︸︸︷
10

5︸︷︷︸
T0

=

T2︷︸︸︷
20

10︸︷︷︸
T1

=

T3︷︸︸︷
40

20︸︷︷︸
T2

= · · · = 2
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Definition (Recursive Formula)

The recursive formula for a geometric sequence is

Next
Term︷︸︸︷
TN =

Previous
term︷ ︸︸ ︷
TN−1 (r).

Notice this is the rule that we stated before: “to get to the next term, you must
multiply the previous term by the common ratio r.”

Let’s see how we apply the recursive formula.

Example (Applying the Recursive Formula) In our sequence
5, 10, 20, 40, . . . we have four terms, T0, T1, T2, and T3. What if we wanted the
fifth term, T4? Using the recursive formula, we have

T4 = T3(r) = (40)(2) = 80.

You can think of the recursive formula as “what would I do to compute the terms
one by one in my head.”

Like we’ve seen, the recursive formula doesn’t cut it on it’s own. For higher order
terms (order is just a fancy word for the position, or subscript), we can rely on the
explicit formula.

Definition (Explicit Formula)

The explicit formula of a geometric sequence is

Any
term︷︸︸︷
TN =

First
term︷︸︸︷
T0 (rN).

Again, like the explicit formula for arithmetic sequences, the only information
we need is the subscript of the term we’re looking for, the first term T0, and the
common ratio r.
In English: “Any Nth term is equal to the first term times r to the Nth power.”
In other words, “times r, N times over.”

Why does the explicit formula work, or make sense? In a general geometric se-
quence suppose we know the common ratio r. We start off with the first term T0. Using
the recursive formula, we can get T1 by multiplying T0 by r, i.e. T1 = T0(r). Now to
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get T2, we repeat the process; multiply T1 by r, i.e. T2 = T1r. But now notice this:

T1 = T0(r)

T2 = T1(r) = (T0r)(r) = T0(r2)

T3 = T2(r) = (T0r
2)(r) = T0(r3)

T4 = T3(r) = (T0r
3)(r) = T0(r4)

...

Do you see the pattern? Start with T1 = T0r, then since we know T2 = T1r by the
recursive formula, and we know the relationship between T1 and T0, we can plug in
for T1 and get a relation between T2 and T0. This is the inner workings of the explicit
formula, and why we use the word “exponential”.

Just like the common difference d in the explicit formula for arithmetic sequences,
the common ratio r is the same for all consecutive terms (hence the word “common”.)
All we really need to do to get any term is “start from the first term T0 and multiply
by r as many times as we need (N times for TN).”

Enough with background, let’s do an example.

Example Consider the sequence 5, 10, 20, 40, . . . . Let’s find T9. Using the
explicit formula

T9 = T0(r9) = (5)(29) = (5)(512) = 2560.

Let’s also find T12. Using the explicit formula,

T12 = T0(r12) = (5)(212) = (5)(4096) = 20480.

Now what if we were given a term and asked where in the sequence it occurs?
(Remember, we did this for arithmetic sequences.) This will not be expected
of you, so you can skip over it if you want.

Question. The number 5120 is what term of the sequence 5, 10, 20, 40, . . . ?

Solution. Again, this question is asking “for which N is TN = 5120. We set up
an equation using the explicit formula:

5120 = 5(2N)

and then we solve

5120 = 5(2N)

1024 = 2N (Divide by 5)

log2(1024) = log2(2N) (log2 of both sides)

log2(1024) = N log2(2) (log properties)

10 = N (Calculator)
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So 5120 is the 11th term, or T10 of the sequence.

In an arithmetic sequence, we have two kinds of “progressions.” If the common
difference is positive, our sequence is increasing. If the common difference is negative,
our sequence is decreasing. What about geometric sequences and the common ratio?

• If r > 1, then a geometric sequence is increasing.

• if 0 < r < 1 (this is strictly bigger than 0 and strictly less than 1), then a
geometric sequence is decreasing.

This is essential to understanding geometric sequences and exponential growth.
Let’s explore why through some examples.

Example (Common Ratios Effect) Consider the sequence 1, 3, 9, 27, . . . .
The common ratio is

r =
3

1
= 3.

As we can see, r > 1, and the sequence is increasing. Most would agree that this
is pretty straightforward. Let’s get r a little closer to 1. What about the sequence
3, 3.3, 3.63, 3.993, . . . ? The common difference is (you can use a calculator)

r =
3.3

3
= 1.1,

and we are much closer to 1, but still increasing. Let’s use the recursive formula
to understand this. For r = 1.1 we have TN = TN−1(1.1). Another way to see
this is to write it as

TN = (1)TN−1 + (0.1)TN−1,

remember that combining like terms gets us back to (1.1)TN−1. So the common
ratio r = 1.1 is telling us that the next term is the previous term plus 0.1 times
the previous term. In other words, the next term is an increase of 10% over
the previous term.

Next
term︷︸︸︷
TN =

Previous
term︷ ︸︸ ︷
TN−1 (1.1) =

Previous
term︷ ︸︸ ︷

(1)TN−1 +

10% of Previous
term︷ ︸︸ ︷

(0.1)TN−1 .

Now let’s see what r < 1 looks like.

Consider the sequence 20000, 5000, 1250, 312.5, . . . . The common ratio is

r =
5000

20000
=

1

4
= 0.25,
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here the fraction or the decimal are acceptable. Notice that our common ratio
is less than 1 and the sequence is decreasing. Why? Since the common ratio is
0.25, or 1

4
, the next term in the sequence is only a fraction of the previous term:

TN = TN−1(0.25) =
TN−1

4
,

and since we only take a portion of the previous term at each step, we decrease.

Now let’s get a little closer to 1. Consider the sequence 4, 3.8, 3.61, 3.4295, . . . .
The common ratio is

r =
3.8

4
= 0.95,

much closer to 1 this time. This is telling us that the next term is 95% of the
previous term, or 5% less than the previous term.

Next
term︷︸︸︷
TN =

Previous
term︷ ︸︸ ︷
TN−1 (0.95) =

Previous
term︷ ︸︸ ︷

(1)TN−1 −

5% of Previous
term︷ ︸︸ ︷

(0.05)TN−1 .

Notice this time we split 0.95 into 1 and 0.05, and used subtraction. This is
where the “5% less” comes from. So if the next term is always 5% less than the
previous, we will decrease.

Notice that we didn’t talk about r = 1 or r ≤ 0. For r = 1 the sequence would just
stay the same (multiplying by 1), for r = 0 all our terms after T0 would be 0. We will
not focus on r < 0.

As a quick side note, you will encounter phrases in word problems such as “increase of
5%,” or “decreases by 10% yearly.” When using geometric sequences to solve problems
and we have a change of p percent (where p is in decimal form):

• The common ratio r = 1 + p if it is an increase.

• The common ratio r = 1 − p if it is a decrease.

For example, an increase of 5% would give a common ratio of 1.05, and a decrease
of 20% would give a common ratio of 0.80.
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Summary

A geometric sequence is a sequence with a common ratio r between any two
consecutive terms. We have formulas for finding their terms.

• Recursive formula: TN = TN−1r, used for quickly finding terms close to
what we already know.

• Explicit formula: TN = T0(rN), used for quickly finding terms in much
higher positions than we already know.

The sequence increases or decreases based on the value of r.

• If r > 1, then a geometric sequence is increasing.

• if 0 < r < 1 (this is strictly bigger than 0 and strictly less than 1), then a
geometric sequence is decreasing.
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3.2 Exponential Sums: Adding Terms Together

Like arithmetic sequences, we are interested in finding the sum of the terms of a se-
quence. We will focus on adding the first N terms of a sequence.

Sum Formula for Geometric Sequence

The formula for finding the sum of the first N terms of a geometric sequence is

N−1∑
i=0

Ti =
T0(rN − 1)

r − 1

Remember, the left side is just notation for “what is being computed,”; we are
taking the sum from i = 0 to N − 1 of the terms Ti. In other words, we are
summing the first N terms,

N−1∑
i=0

Ti =

N terms︷ ︸︸ ︷
T0 + T1 + T2 + · · · + TN−1 .

The right side gives us a small, convenient computation involving the first term
T0, the common difference r, and the total number of terms we are adding N .

Now that we have a sum formula for geometric sequences, let’s take it for a test drive.
Remember to be careful with order of operations, exponents, and paying attention to
N − 1 on top of the sigma and the exponent N in rN .

Example (Sum of Geometric Sequence Terms) Consider the sequence
5, 10, 20, 40, . . . . We found that the explicit formula is TN = 5(2N). Let’s do
something we can check easily.
Question. What is the sum of the first four terms?

Solution. Directly adding them together we have 5 + 10 + 20 + 40 = 75. Using
the sum formula:

3∑
i=0

Ti =
5(24 − 1)

2 − 1
=

5(16 − 1)

1
= 5(15) = 75

That was a nice little example. Try finding the sum of the first ten terms of the
sequence in the above example. The answer should be 5115. Let’s do a complete
example.
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Example (Geometric Sequence from Scratch) Consider the sequence
20000, 5000, 1250, 312.5, . . . . Find the sum of the first fifteen (15) terms.

Solution. Earlier we found the common difference to be r = 5000
20000

= 1
4

= 0.25.
Now we setup our formula

14∑
i=0

Ti =
T0(r15 − 1)

r − 1
.

Remember, we are adding the first fifteen terms (N = 15), so the top of the
sum should be N − 1 = 14. Unlike arithmetic sequences, there’s no “later term”
that we have to find. With just T0 and r, we’re good to go. So (we can use a
calculator):

14∑
i=0

Ti =
(20000)((0.25)15 − 1)

0.225 − 1
=

(20000)(9.3132 × 10−10 − 1)

−0.75
= 26666.6666 . . . .

What a spooky number. It’s important to pay attention to the order of operations
when using a calculator.

Try working on finding the sum of the first 8 terms of the sequence 1, 4, 16, 64, . . . .
The answer should be 21845.

Summary

The formula for finding the sum of the first N terms of a geometric sequence is

N−1∑
i=0

Ti =
T0(rN − 1)

r − 1
.

This is more convenient since all we need is the common ratio and N , the number
of terms we want to add up. The less convenient part is the actual computation,
which may require a calculator for wacky numbers.
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3.3 Exponential Growth Applications: Word Problems

Now that we’ve got geometric sequences in our toolbox, let’s apply our skills.

Example (Marcia’s Salary) Marcia has just been offered a job with a start-
ing salary of $32,000. She is not initially impressed, but the hiring committee is
trying to persuade her by explaining that if she takes the job she is guaranteed
a 7.5% raise each year for the next 20 years as long as her job performance is
satisfactory. Assume that Marcia takes the job and starts in January 2020.

1. What will Marcia’s Salary be in 2021, 2022, and 2023?

2. What will Marcia’s Salary be in 2035?

3. How much total money will Marcia have been paid after working for the
company for 20 years?

Solution. We can solve these problems by first defining a sequence. Let’s use
MN for Marcia’s Salary N years after 2020. So, M0 = 32000, Marcia’s salary in
the year 2020 (0 years after 2020).
If we wanted to know how much she made in 2021, or M1, we would use the
recursive formula. The problem states that she is guaranteed a 7.5% increase
every year. This means that if x is her salary for some year, then the next year
she will receive

x +

7.5%︷ ︸︸ ︷
0.075x = 1.075x.

So the common ratio is r = 1.075 (remember your skill reviews, if a number x is
increased by 7.5% then the new number is 1.075x.) Now we have our recursive
formula,

MN = MN−1(1.075).

Now we can calculate her salaries for 2021, 2022, and 2023.

M0 = 32000

M1 = M0(1.075) = (32000)(1.075) = 34400 (2021)

M2 = M1(1.075) = (34400)(1.075) = 36980 (2022)

M3 = M2(1.075) = (36980)(1.075) = 39753.50 (2023)

Things aren’t so simple for 2035, however. Now we should use the explicit
formula. The explicit formula is

MN = M0(rN) = (32000)(1.075N),
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so for the year 2035, or M15, we have

M15 = (32000)(1.07515) ≈ 94684.08.

Finally, we want to know the total money Marcia has been paid after working
at the company for 20 years. The key word here is total. Since MN is Marcias
yearly salary N years after 2020, we want to add up 20 terms of our sequence to
know how much she has been paid in total after 20 years of working. The setup
is:

19∑
i=0

Mi =
M0(r20 − 1)

r − 1
=

(32000)((1.075)20 − 1)

(1.075) − 1

Remember, N is the number of terms we are adding together, and here N = 20,
or 20 years worth of salary. So the sum must go from 0 to N − 1 = 19. Compute
the sum using a calculator. The answer should be $1, 385, 749.80
So in total we have

1. What will Marcia’s Salary be in 2021, 2022, and 2023? – $34,400, $36,980,
$39,753.50

2. What will Marcia’s Salary be in 2035? – $94,684

3. How much total money will Marcia have been paid after working for the
company for 20 years? – $1,385,749.80
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