Introducing 3-Path Domination

Rayan Ibrahim¹ Rebecca Jackson² Erika L.C. King³

CUNY College of Staten Island 1 Charleston Southern University 2 Hobart and William Smith Colleges 3

Young Mathematicians Conference 2018

Graphs - Definitions

Graph

G = (V, E) is a graph G with a set of vertices V(G) and set of edges E(G). We will work with *simple graphs* containing no loops or multiple edges.

A D F A 目 F A E F A E F A Q Q

Graphs - Definitions

Graph

G = (V, E) is a graph G with a set of vertices V(G) and set of edges E(G). We will work with *simple graphs* containing no loops or multiple edges.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Graphs - Definitions

Graph

G = (V, E) is a graph G with a set of vertices V(G) and set of edges E(G). We will work with *simple graphs* containing no loops or multiple edges.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Domination

Dominating Set

The set $S \subseteq V(G)$ is a dominating set of G if for every vertex $v \in V(G)$, either $v \in S$ or v is adjacent to a vertex in S. Every $v \in S$ can be thought of as a guard that dominates adjacent rooms (vertices are rooms, edges are hallways).

Domination Number

The minimum cardinality of a dominating set, denoted $\gamma(G)$.

うして ふゆ く は く は く む く し く

Domination

Dominating Set

The set $S \subseteq V(G)$ is a dominating set of G if for every vertex $v \in V(G)$, either $v \in S$ or v is adjacent to a vertex in S. Every $v \in S$ can be thought of as a guard that dominates adjacent rooms (vertices are rooms, edges are hallways).

Domination Number

The minimum cardinality of a dominating set, denoted $\gamma(G)$.

Domination

Minimum Dominating Set Example

A case where $\gamma(G) = 2$. Every guard can watch every adjacent room, including theirs.

Paired-Domination Introduced by Haynes and Slater in 1998

Paired-Dominating Set

A dominating set where the induced subgraph on the set contains a perfect matching. In the sense of the guard analogy, every guard has another guard watching their back.

Paired-Domination Number

The minimum cardinality of a paired-dominating set, denoted $\gamma_{pr}(G)$, is always even.

うして ふゆ く は く は く む く し く

Paired-Domination Introduced by Haynes and Slater in 1998

Paired-Dominating Set

A dominating set where the induced subgraph on the set contains a perfect matching. In the sense of the guard analogy, every guard has another guard watching their back.

Paired-Domination Number

The minimum cardinality of a paired-dominating set, denoted $\gamma_{pr}(G)$, is always even.

3-Path Domination

3-Path Dominating Set

Let Q_i represent a path on 3 vertices. Then we define a 3-path dominating set of G to be $S = \{Q_1, Q_2, \ldots, Q_k\}$ such that the vertex set $V(S) = V(Q_1) \cup V(Q_2) \cup \cdots \cup V(Q_k)$ is a dominating set.

うして ふゆ く は く は く む く し く

3-Path Domination

3-Path Dominating Set

Let Q_i represent a path on 3 vertices. Then we define a 3-path dominating set of G to be $S = \{Q_1, Q_2, \ldots, Q_k\}$ such that the vertex set $V(S) = V(Q_1) \cup V(Q_2) \cup \cdots \cup V(Q_k)$ is a dominating set.

うして ふゆ く は く は く む く し く

3-Path Domination

3-Path Dominating Set

Let Q_i represent a path on 3 vertices. Then we define a 3-path dominating set of G to be $S = \{Q_1, Q_2, \ldots, Q_k\}$ such that the vertex set $V(S) = V(Q_1) \cup V(Q_2) \cup \cdots \cup V(Q_k)$ is a dominating set.

3-Path Domination Number

3-Path Domination Number

The minimum number of 3-paths needed to dominate a graph G, denoted $\gamma_{P_3}(G)$.

Justification

A vertex in a 3-path dominating set can be in more than one 3-path. So, the number of vertices in the set does not directly translate to the number of 3-paths.

3-Path Domination Number

Example

Below is an example of minimum 3-path dominating set. Although 9 vertices are being used, we have 4 3-paths.

What is minimal?

Minimal

A dominating set S is said to be minimal if for a vertex $v \in S$, $S \setminus v$ is not a dominating set. A minimal dominating set is not a proper subset of any other dominating set.

うして ふゆ く は く は く む く し く

What is minimal?

Minimal

A dominating set S is said to be minimal if for a vertex $v \in S$, $S \setminus v$ is not a dominating set. A minimal dominating set is not a proper subset of any other dominating set.

The 3-Path Domination Problem is NP-complete

Theorem

Deciding for a given graph H and positive integer K such that $3K \leq |V(H)|$, "Is $\gamma_{P_3}(H) \leq K$?" is NP-complete.

- In Haynes and Slater's paper, Paired Domination in Graphs, we get the result that paired domination is NP-complete.
- We generalized this result to show that the 3-path domination problem is also NP-complete.

Upper Bound

Lemma

For a connected graph G, there exists an edge-disjoint minimal 3-path dominating set.

Figure: Two 3-paths, $\{v_2, v_3, v_4\}$ and $\{v_3, v_4, v_5\}$ dominating the path graph P_6 .

A D F A 目 F A E F A E F A Q Q

Upper Bound

Lemma

For a connected graph G, there exists an edge-disjoint minimal 3-path dominating set.

Figure: Two 3-paths, $\{v_2, v_3, v_4\}$ and $\{v_4, v_5, v_6\}$ dominating the path graph P_6 .

A D F A 目 F A E F A E F A Q Q

Upper Bound

Lemma

For a connected graph G, there exists an edge-disjoint minimal 3-path dominating set.

Upper Bound

By the above lemma, we have $\gamma_{P_3}(G) \leq \left| \frac{|E(G)|}{2} \right|$.

Trees

Tree

A tree T_n is an acyclic, connected graph on n vertices. Every tree has n - 1 edges.

Spanning Tree

A spanning tree T_G of a graph G is a tree with vertex set V(G)and edge set $E(T_G) \subseteq E(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A graph G with n = 30 vertices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A graph G with n = 30 vertices.

The Spanning Tree T_G of G.

A Small Example

Figure: An example where the blue path is no longer needed when an edge is added.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A More Explicit Bound

Theorem

For a connected graph G on n vertices, $\gamma_{P_3}(G) \leq \left|\frac{n-1}{2}\right|$.

Proof.

Let G be a connected graph on n vertices and T_G be its spanning tree. We know $\gamma_{P_3}(T_G) \leq \lfloor \frac{n-1}{2} \rfloor$. In order to obtain G from T_G , we need to add our missing edges, namely $E(G) \setminus E(T_G)$. Observe, adding edges to a graph will either keep the domination number the same or cause it to decrease. So,

$$\gamma_{P_3}(G) \le \gamma_{P_3}(T_G) \le \left\lfloor \frac{n-1}{2} \right\rfloor$$

3-Path Domination vs. Paired Domination

Theorem

For any connected graph G on $n \geq 3$ vertices, $\gamma_{P_3}(G) \leq \frac{\gamma_{Pr}(G)}{2}$.

Sketch of Proof.

Let *D* be a minimum paired-dominating set of *G*. Every pair of vertices in *D* has a neighbor that is not in *D*. So we can count every pair and a neighbor as a 3-path. So, $\gamma_{P_3}(G) \leq \frac{\gamma_{PT}(G)}{2}$.

3-Path Domination vs. Paired Domination $_{\rm Example}$

Figure: The γ_{pr} -set from above turned into a γ_{P_3} -set

A D F A 目 F A E F A E F A Q Q

Conjecture

Theorem (Haynes et al.)

For any connected graph G on $n \ge 6$ vertices and $\delta(G) \ge 2$, $\gamma_{pr}(G) \le \frac{2n}{3}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Conjecture

Theorem (Haynes et al.)

For any connected graph G on $n \ge 6$ vertices and $\delta(G) \ge 2$, $\gamma_{pr}(G) \le \frac{2n}{3}$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Theorem

For any connected graph G with $n \ge 6$ and $\delta(G) \ge 2$, $\gamma_{P_3}(G) \le \frac{n}{3}$.

Conjecture

Theorem (Haynes et al.)

For any connected graph G on $n \ge 6$ vertices and $\delta(G) \ge 2$, $\gamma_{pr}(G) \le \frac{2n}{3}$.

Theorem

For any connected graph G with $n \ge 6$ and $\delta(G) \ge 2$, $\gamma_{P_3}(G) \le \frac{n}{3}$.

Conjecture

For any connected graph G with $n \ge 3$, $\gamma_{P_3}(G) \le \frac{n}{3}$.

Additional Results

- Comparisons between $\gamma(G)$, $\gamma_{pr}(G)$, and $\gamma_{P_3}(G)$
- Tighter bounds for certain families of graphs, such as:
 - Caterpillar Trees
 - Graphs with a Hamiltonian Path
- Closed formulas for certain families of graphs, such as:
 - Paths or Cycle Graphs
 - Harary graphs $H_{k,n}$ where k is even
 - Banana Trees
- Algorithms for finding a minimal 3-path dominating set in trees

うして ふゆ く は く は く む く し く

Thank you!

- This material is based upon work supported by the National Science Foundation under grant no. DMS 1757616.
- We extend our thanks to:
 - Bert Hartnell of Saint Mary's University (Halifax).
 - All YMC organizers.
 - Erika King of Hobart and William Smith Colleges.

A D F A 目 F A E F A E F A Q Q

References

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman & Co., New York, NY, USA, 1979.

T.W. Haynes, S. Hedetniemi, and P. Slater.
Fundamentals of Domination in Graphs.
Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1998.

Haynes Teresa W. and Slater Peter J. Paired-domination in graphs. *Networks*, 32(3):199–206, 1998.