The Reconstruction Conjecture A Brief Introduction

Rayan Ibrahim

VCU SYSM697 Presentations February 22, 2021

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Graphs - Definitions

Graph

 $G = (V, E)$ is a graph G with a set of vertices $V(G)$ and set of edges $E(G)$. We will work with *finite simple graphs*; graphs that do not contain loops or multiple edges. We will use the notation |G| for $|V(G)|$ and $||G||$ for $|E(G)|$.

Graphs - Definitions

Graph

 $G = (V, E)$ is a graph G with a set of vertices $V(G)$ and set of edges $E(G)$. We will work with *finite simple graphs*; graphs that do not contain loops or multiple edges. We will use the notation |G| for $|V(G)|$ and $||G||$ for $|E(G)|$.

Graphs - Definitions

Graph

 $G = (V, E)$ is a graph G with a set of vertices $V(G)$ and set of edges $E(G)$. We will work with *finite simple graphs*; graphs that do not contain loops or multiple edges. We will use the notation |G| for $|V(G)|$ and $||G||$ for $|E(G)|$.

Conjecture [Kelly '57]

Let A and B be sets with $|A| = |B| = n$.

Let A and B be sets with $|A| = |B| = n$. Define a distance function ρ such that $\rho(x, x) = 0$ and $\rho(x, y) = 1$ or 2.

Let A and B be sets with $|A| = |B| = n$. Define a distance function ρ such that $\rho(x, x) = 0$ and $\rho(x, y) = 1$ or 2. Assume for every $n-1$ subset of A there exists an isometric $n-1$ subset of B.

Let A and B be sets with $|A| = |B| = n$. Define a distance function ρ such that $\rho(x, x) = 0$ and $\rho(x, y) = 1$ or 2. Assume for every $n-1$ subset of A there exists an isometric $n-1$ subset of B. Assume the number of distinct subsets isometric to any given $n-1$ subset is the same in A as in B.

Let A and B be sets with $|A| = |B| = n$. Define a distance function ρ such that $\rho(x, x) = 0$ and $\rho(x, y) = 1$ or 2. Assume for every $n-1$ subset of A there exists an isometric $n-1$ subset of B. Assume the number of distinct subsets isometric to any given $n-1$ subset is the same in A as in B. Then A and B are isometric.

The Deck of a Graph - Definition

Definition – $D(G)$

We define the *deck* of a graph G , denoted $D(G)$, to be the collection of vertex-deleted subgraphs of G . That is, the deck is the multiset

 $D(G) = \{G - v \mid v \in V(G)\}.$

The Deck of a Graph - Definition

Definition – $D(G)$

We define the *deck* of a graph G , denoted $D(G)$, to be the collection of vertex-deleted subgraphs of G . That is, the deck is the multiset

$$
D(G) = \{G - v \mid v \in V(G)\}.
$$

KORKA SERKER ORA

Each subgraph in $D(G)$ is called a *card*.

The Deck of a Graph - Definition

Definition – $D(G)$

We define the *deck* of a graph G , denoted $D(G)$, to be the collection of vertex-deleted subgraphs of G. That is, the deck is the multiset

$$
D(G) = \{G - v \mid v \in V(G)\}.
$$

- Each subgraph in $D(G)$ is called a *card*.
- A deck may contain several isomorphism classes. The size of an isomorphism class is its multiplicity.

Example - The House Graph

Example - The House Graph

イロト イ御 トメミト メミト ニミー のんぺ

Example - The House Graph

イロト イ御 トメミト メミト ニミー のんぺ

Reconstructible Properties

A characteristic of a graph, such as an invariant, is said to be reconstructible if it can be obtained from the deck.

KORKARKKERK EL VAN

Reconstructible Properties

A characteristic of a graph, such as an invariant, is said to be reconstructible if it can be obtained from the deck.

KORKARKKERK EL VAN

$$
\blacksquare |G| = |D(G)| = n
$$

Reconstructible Properties

A characteristic of a graph, such as an invariant, is said to be reconstructible if it can be obtained from the deck.

KORKARKKERK EL VAN

■
$$
|G| = |D(G)| = n
$$

■ $||G|| = \frac{1}{n-2} \sum_{H \in D(G)} ||H||$

Reconstructible Properties

A characteristic of a graph, such as an invariant, is said to be reconstructible if it can be obtained from the deck.

KORKA SERKER ORA

$$
\blacksquare\,\, |G|=|D(G)|=n
$$

$$
\blacksquare ||G|| = \frac{1}{n-2} \sum_{H \in D(G)} ||H||
$$

■ Vertex Degree: $deg(v) = ||G|| - ||G - v||$

Reconstructible Properties

A characteristic of a graph, such as an invariant, is said to be reconstructible if it can be obtained from the deck.

$$
\blacksquare|G| = |D(G)| = n
$$

$$
\blacksquare ||G|| = \frac{1}{n-2} \sum_{H \in D(G)} ||H||
$$

- Vertex Degree: $deg(v) = ||G|| ||G v||$
- Vertex Connectivity: $\kappa(G) = 1 + \min_{H \in D(G)} \kappa(H)$

Reconstruction

Definitions – Reconstructible (Graphs)

A graph H with the same deck as G is said to be a reconstruction of G . If every reconstruction of G is isomorphic to G , then we say G is reconstructible.

Reconstruction

Definitions – Reconstructible (Graphs)

A graph H with the same deck as G is said to be a reconstruction of G. If every reconstruction of G is isomorphic to G , then we say G is reconstructible.

Reconstructible – Two Meanings

A function is reconstructible if it holds the same value over all reconstructions of G, whereas a **graph** is reconstructible if it is determined by its deck, up to isomorphism.

The Reconstruction Conjecture [?? '29, Kelly '57, Ulam '60]

1 Every graph with at least three vertices is reconstructible.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

The Reconstruction Conjecture [?? '29, Kelly '57, Ulam '60]

1 Every graph with at least three vertices is reconstructible. 2 If two graphs G and H have the same deck and $|G| = |H| > 3$, then $G \cong H$.

The Reconstruction Conjecture [?? '29, Kelly '57, Ulam '60]

1 Every graph with at least three vertices is reconstructible. 2 If two graphs G and H have the same deck and $|G| = |H| > 3$, then $G \cong H$.

From before...

Conjecture [Kelly '57]

Let A and B be sets with $|A| = |B| = n$. Define a distance function ρ such that $\rho(x, x) = 0$ and $\rho(x, y) = 1$ or 2. Assume for every $n-1$ subset of A there exists an isometric $n-1$ subset of B. Assume the number of distinct subsets isometric to any given $n-1$ subset is the same in A as in B. Then A and B are isometric.

The Reconstruction Conjecture – $n \geq 3$?

Counter-example for $n = 2$

The graphs K_2 and $2K_1 \cong \overline{K_2}$ are not isomorphic, yet have the same deck.

A Note On The Legitimacy of Decks

The Deck Legitimacy Problem

Given a multiset of graphs, how can one determine whether it is the deck of some graph?

A Note On The Legitimacy of Decks

The Deck Legitimacy Problem

Given a multiset of graphs, how can one determine whether it is the deck of some graph?

KORKA SERKER ORA

For the RC, we assume any given deck is legitimate.

A Note On The Legitimacy of Decks

The Deck Legitimacy Problem

Given a multiset of graphs, how can one determine whether it is the deck of some graph?

- For the RC, we assume any given deck is legitimate.
- Determining whether a given deck is legitimate is at least as hard as the Graph Isomorphism problem [Mansfield '80].

Definition – Reconstruction Number

The reconstruction number, denoted $\text{rn}(G)$, of a graph G is the cardinality of a smallest subdeck determining G. Note that $\text{rn}(G) \geq 3$ and $\text{rn}(G)$ is bounded above by quantities well below n .

KORKA SERKER ORA

 \blacksquare Ally-reconstruction – How you would expect. We can choose any cards.

Definition – Reconstruction Number

The reconstruction number, denoted $\text{rn}(G)$, of a graph G is the cardinality of a smallest subdeck determining G. Note that $\text{rn}(G) \geq 3$ and $\text{rn}(G)$ is bounded above by quantities well below n .

- \blacksquare Ally-reconstruction How you would expect. We can choose any cards.
- \blacksquare Adversary-reconstruction Evil adversary orders the deck. Whats the worst case?

The Reconstruction Conjecture – Evidence?

$G_{p,n}$

A random graph with n vertices and edges chosen randomly and independently with probability p.

Result – a.e. Graph has $rn(G) = 3$ [Bollobás '90]

Let $c > 5/2$ and $(c \log n)/n \leq p = p(n) \leq 1 - (c \log n)/n$. Then a.e. $G_{p,n}$ has reconstruction number 3 for $n \geq 3$.

Kelly's Lemma [Kelly '57]

Let F and G be graphs such that $|F| < |G|$. Define $s(F, G)$ to be the number of subgraphs of G isomorphic to F . Then $s(F, G)$ is reconstructible.

Proof.

$$
s(F,G)=\frac{1}{|G|-|F|}\sum_{H\in D(G)}s(F,H).
$$

The Reconstruction Conjecture – Evidence?

Immediate Consequences of Kelly's Lemma

Using the equation

$$
s(F, G) = \frac{1}{|G| - |F|} \sum_{H \in D(G)} s(F, H),
$$

setting $F = K_2$ we have

$$
s(K_2, G) = \frac{1}{|G| - 2} \sum_{H \in D(G)} ||H|| = ||G||.
$$

KORKA SERKER ORA

Hence the number of edges and degree sequence are recontructible.

Classes of Graphs

Reconstructible Classes

- Trees for $|T| \geq 5$, rn $(T) = 3$ [Myrvold '90]... CASE WORK
- Disconnected Graphs find largest component. For each component, there is a card containing it.
- Regular graphs all vertices have the same degree. Use consequences of Kelly's Lemma.

Classes of Graphs

Reconstructible Classes

- Trees for $|T| \geq 5$, $\text{rn}(T) = 3$ [Myrvold '90]... CASE WORK
- Disconnected Graphs find largest component. For each component, there is a card containing it.
- Regular graphs all vertices have the same degree. Use consequences of Kelly's Lemma.

Non-reconstructible graphs

- Directed graphs
- Infinite graphs Take an infinite tree T and $2T$.
- Hypergraphs 3-uniform hypergraphs [Kocay '87]
- ... among others