Determinants of Simple Theta Curves

Matthew Elpers, Rayan Ibrahim^{*}, Allison H. Moore

AMS Contributed Paper Session on Topology January 6, 2023

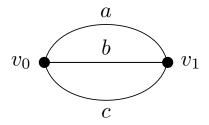
Acknowledgement: Supported in part by The Thomas F. and Kate Miller Jeffress Memorial Trust, Bank of America, Trustee and by National Science Foundation DMS-2204148.

Definition – Theta Curve

A theta curve ϑ is an embedding of a θ -graph in the three-sphere, up to equivalence by ambient isotopy.

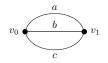
Definition – Theta Curve

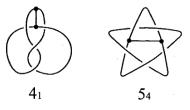
A theta curve ϑ is an embedding of a θ -graph in the three-sphere, up to equivalence by ambient isotopy.



Definition – Theta Curve

A theta curve ϑ is an embedding of a θ -graph in the three-sphere, up to equivalence by ambient isotopy.





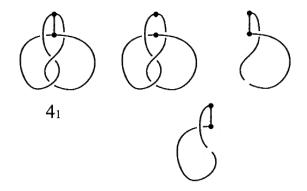
Moriuchi, 2009. Table 1.

Definition – Constituent Knot

Every theta curve contains three constituent knots K_{ij} formed by taking pairs of edges $i, j \in \{a, b, c\}$.

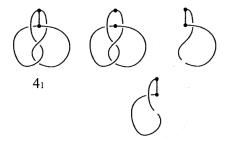
Definition – Constituent Knot

Every theta curve contains three constituent knots K_{ij} formed by taking pairs of edges $i, j \in \{a, b, c\}$.



Definition – Constituent Knot

Every theta curve contains three constituent knots K_{ij} formed by taking pairs of edges $i, j \in \{a, b, c\}$.



Simple Theta

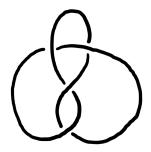
A theta curve with a constituent unknot is called *simple*.

SIK (Sakuma, 1985)

A knot K in S^3 is strongly invertible if there is an orientation-preserving involution h on S^3 such that h(K) = K and Fix(h) is a circle intersecting K in two points.

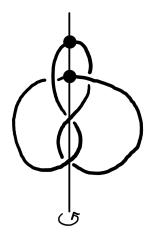
SIK (Sakuma, 1985)

A knot K in S^3 is strongly invertible if there is an orientation-preserving involution h on S^3 such that h(K) = K and Fix(h) is a circle intersecting K in two points.



SIK (Sakuma, 1985)

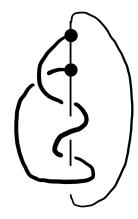
A knot K in S^3 is strongly invertible if there is an orientation-preserving involution h on S^3 such that h(K) = K and Fix(h) is a circle intersecting K in two points.



SIK (Sakuma, 1985)

A knot K in S^3 is strongly invertible if there is an orientation-preserving involution h on S^3 such that h(K) = K and Fix(h) is a circle intersecting K in two points.

*There is a correspondence between simple ϑ and (K, h), in particular $\vartheta = K/h \cup \text{Fix}(h)$



Determinant of a Knot

Let K be a knot in S^3 .

$$\det(K) = \Delta_K(-1) = \det(V + V^T) = |H_1(\Sigma_2(S^3, K))|$$

Determinant of a Knot

Let K be a knot in S^3 .

$$\det(K) = \Delta_K(-1) = \det(V + V^T) = |H_1(\Sigma_2(S^3, K))|$$

- $\Delta_K(t)$ is the Alexander Polynomial.
- V is a Seifert matrix for K.

Determinant of a Knot

Let K be a knot in S^3 .

$$\det(K) = \Delta_K(-1) = \det(V + V^T) = |H_1(\Sigma_2(S^3, K))|$$

- $\Delta_K(t)$ is the Alexander Polynomial.
- V is a Seifert matrix for K.

Note: the determinant of a knot is an odd integer.

Determinant of a Knot

Let K be a knot in S^3 .

$$\det(K) = \Delta_K(-1) = \det(V + V^T) = |H_1(\Sigma_2(S^3, K))|$$

- $\Delta_K(t)$ is the Alexander Polynomial.
- V is a Seifert matrix for K.

Note: the determinant of a knot is an odd integer.

How do we define a determinant for ϑ ?

Determinant of a Knot

Let K be a knot in S^3 .

$$\det(K) = \Delta_K(-1) = \det(V + V^T) = |H_1(\Sigma_2(S^3, K))|$$

Determinant of a ϑ

Let Σ_{ϑ} denote the Klein cover of a theta curve in S^3 . Then $\det(\vartheta) = |H_1(\Sigma_{\vartheta})|$.

Determinant of a Knot

Let K be a knot in S^3 .

$$\det(K) = \Delta_K(-1) = \det(V + V^T) = |H_1(\Sigma_2(S^3, K))|$$

Determinant of a ϑ

Let Σ_{ϑ} denote the Klein cover of a theta curve in S^3 . Then $\det(\vartheta) = |H_1(\Sigma_{\vartheta})|$.

 Σ_ϑ can be visualized by iterating a branched double cover construction.

$$\Sigma_{\vartheta} \cong \Sigma_2(\Sigma_2(S^3, K_{ac}), \tilde{e}_b).$$

Determinant of a ϑ

Let Σ_{ϑ} denote the Klein cover of a theta curve in S^3 . Then $\det(\vartheta) = |H_1(\Sigma_{\vartheta})|$.

If ϑ simple...

Determinant of a ϑ

Let Σ_{ϑ} denote the Klein cover of a theta curve in S^3 . Then $\det(\vartheta) = |H_1(\Sigma_{\vartheta})|$.

If ϑ simple... We take K_{ac} to be the unknot (Σ_{ϑ} is unique).

$$\Sigma_{\vartheta} \cong \Sigma_2(\overbrace{\Sigma_2(S^3, K_{ac})}^{S^3}, \underbrace{\tilde{e}_b}_{\text{SIK}}).$$

Determinant of a ϑ

Let Σ_{ϑ} denote the Klein cover of a theta curve in S^3 . Then $\det(\vartheta) = |H_1(\Sigma_{\vartheta})|$.

If ϑ simple... We take K_{ac} to be the unknot (Σ_{ϑ} is unique).

$$\Sigma_{\vartheta} \cong \Sigma_2(\overbrace{\Sigma_2(S^3, K_{ac})}^{S^3}, \underbrace{\tilde{e}_b}_{\text{SIK}}).$$

For ϑ with corresponding strongly invertible knot (K, h), $\det(\vartheta) = \det((K, h))$.

Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

$$\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$$

Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

$$\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$$

 $\det \vartheta = \det(K, h)$

Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

$$\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$$

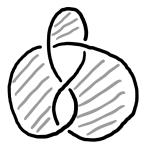
$$\det \vartheta = \det(K, h)$$
$$= \tau(G)$$

Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

 $\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$

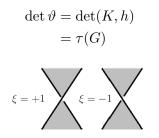
 $\det \vartheta = \det(K, h)$ $= \tau(G)$

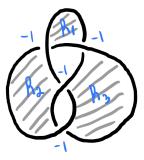


Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

 $\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$



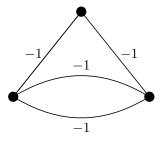


Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

$$\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$$

 $\det \vartheta = \det(K, h)$ $= \tau(G)$

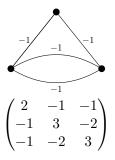


Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

 $\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$

 $\det \vartheta = \det(K, h)$ $= \tau(G)$

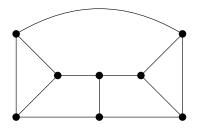


Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

 $\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$

$$\det \vartheta = \det(K, h)$$
$$= \tau(G)$$
$$= 2^{m-1}\tau(G_L)\tau(G_R)$$



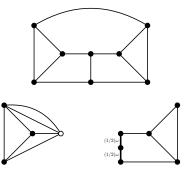
Ciucu, Yan, Zhang 2005 Yan, Zhang, 2009

Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

 $\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$

$$\det \vartheta = \det(K, h)$$
$$= \tau(G)$$
$$= 2^{m-1}\tau(G_L)\tau(G_R)$$
$$= \tau(G_{ab})\tau(G_{bc})$$



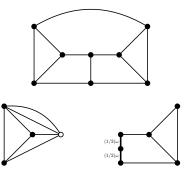
Theorem (EIM, 2022)

If ϑ is a simple theta curve with constituent knots K_{ab}, K_{ac}, K_{bc} then

 $\det(\vartheta) = \det(K_{ab}) \cdot \det(K_{ac}) \cdot \det(K_{bc}).$

$$\det \vartheta = \det(K, h)$$

= $\tau(G)$
= $2^{m-1}\tau(G_L)\tau(G_R)$
= $\tau(G_{ab})\tau(G_{bc})$
= $\det(K_{ab})\det(K_{bc})$



Open Questions

- Do other definitions of the determinant that come from other strategies agree with the definition presented here?
- Can a spanning tree enumeration strategy can be used to calculate det(v) for non-simple theta curves or other Klein graphs (3-Hamiltonian, trivalent)?

Open Questions

- Do other definitions of the determinant that come from other strategies agree with the definition presented here?
- Can a spanning tree enumeration strategy can be used to calculate det(v) for non-simple theta curves or other Klein graphs (3-Hamiltonian, trivalent)?

Thank you!

M. Elpers, R. Ibrahim, A. H. Moore, Determinants of simple theta curves and symmetric graphs, 2022. arXiv.2211.00626.

ibrahimr3@vcu.edu

Extra