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A theta curve ¥ is an embedding of a 6-graph in the
three-sphere, up to equivalence by ambient isotopy.



Theta Curves

Definition — Theta Curve

A theta curve ¥ is an embedding of a f#-graph in the
three-sphere, up to equivalence by ambient isotopy.

Vo U1



Theta Curves

Definition — Theta Curve

A theta curve ¥ is an embedding of a 6-graph in the
three-sphere, up to equivalence by ambient isotopy.

< W

Moriuchi, 2009. Table 1.
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Definition — Constituent Knot

Every theta curve contains three constituent knots K;; formed
by taking pairs of edges i, j € {a,b, c}.

(\ Simple Theta

()/ @ / A theta curve with a

constituent unknot is called
4 G simple.



Strongly Invertible Knots

SIK (Sakuma, 1985)

A knot K in S3 is strongly
invertible if there is an
orientation-preserving
involution h on S3 such that
h(K) = K and Fix(h) is a
circle intersecting K in two
points.
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Strongly Invertible Knots

SIK (Sakuma, 1985)

A knot K in S3 is strongly
tnwertible if there is an
orientation-preserving
involution h on S3 such that
h(K) = K and Fix(h) is a
circle intersecting K in two
points.

*There is a correspondence
between simple ¥ and

(K, h), in particular

v = K/hUFix(h)
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Determinant of a Knot
Let K be a knot in S3.

det(K) = Ag(—1) = det(V + V1) = |H (Z2(S3, K))|

Determinant of a 9

Let ¥y denote the Klein cover of a theta curve in S%. Then
det(¥) = |H1(Zy)|.

>y can be visualized by iterating a branched double cover
construction.
Sy & D9(52(5%, Kac), &).
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Determinant of a 9

Let ¥y denote the Klein cover of a theta curve in S3. Then
det(ﬁ) = \H1(2§)|

If ¥ simple... We take K . to be the unknot (Xy is unique).
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For ¢ with corresponding strongly invertible knot (K, h),
det(¥) = det((K, h)).
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Main Theorem

Theorem (EIM, 2022)

If ¢ is a simple theta curve with constituent knots Kyp, Kqc, Kpe
then
det () = det(Kyp) - det(Kqe) - det(Kpe).

det v = det(K, h)
=7(G)
=2""7(GL)7(Gr)
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Open Questions

m Do other definitions of the determinant that come from
other strategies agree with the definition presented here?

m Can a spanning tree enumeration strategy can be used to
calculate det(1)) for non-simple theta curves or other Klein
graphs (3-Hamiltonian, trivalent)?
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m Can a spanning tree enumeration strategy can be used to
calculate det(1)) for non-simple theta curves or other Klein
graphs (3-Hamiltonian, trivalent)?

Thank you!
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] 22: ’/Tl(X,CB) — Hl(X;Z) — 7 — Z2
m Xy m(Y,z) = Hi(Y;Z) = Zo X Zo



