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Theta Curves

Definition – Theta Curve

A theta curve ϑ is an embedding of a θ-graph in the
three-sphere, up to equivalence by ambient isotopy.
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involution h on S3 such that
h(K) = K and Fix(h) is a
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Strongly Invertible Knots

SIK (Sakuma, 1985)

A knot K in S3 is strongly
invertible if there is an
orientation-preserving
involution h on S3 such that
h(K) = K and Fix(h) is a
circle intersecting K in two
points.
*There is a correspondence
between simple ϑ and
(K,h), in particular
ϑ = K/h ∪ Fix(h)
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Determinant of a Knot

Let K be a knot in S3.

det(K) = ∆K(−1) = det(V + V T ) = |H1(Σ2(S
3,K))|

∆K(t) is the Alexander Polynomial.

V is a Seifert matrix for K.

Note: the determinant of a knot is an odd integer.

How do we define a determinant for ϑ?
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SIK

).

For ϑ with corresponding strongly invertible knot (K,h),
det(ϑ) = det((K,h)).



The Determinant

Determinant of a ϑ

Let Σϑ denote the Klein cover of a theta curve in S3. Then
det(ϑ) = |H1(Σϑ)|.

If ϑ simple... We take Kac to be the unknot (Σϑ is unique).

Σϑ
∼= Σ2(

S3︷ ︸︸ ︷
Σ2(S

3,Kac), ẽb︸︷︷︸
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Open Questions

Do other definitions of the determinant that come from
other strategies agree with the definition presented here?

Can a spanning tree enumeration strategy can be used to
calculate det(ϑ) for non-simple theta curves or other Klein
graphs (3-Hamiltonian, trivalent)?

Thank you!
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Extra

Σ2: π1(X,x) → H1(X;Z) → Z → Z2

Σϑ: π1(Y, x) → H1(Y ;Z) → Z2 × Z2


