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Introduction

Definition – Graph

G = (V,E) is a graph with a set of vertices V (G) and edges
E(G). We will work with finite simple graphs; graphs that do
not contain loops or multiple edges.
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Definition – Independence

An independent set S ⊆ V (G) is a set of pairwise non-adjacent
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Motivation – Why study alpha-two graphs?

Definition – Chromatic Number

A proper coloring of a graph G assigns to each vertex of G a
color so that no two adjacent vertices share the same color. The
chromatic number, χ(G), is the minimum number of colors
needed for a proper coloring.
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Observation

ω(G) ≤ χ(G). Need at least
as many colors as the size of
the largest clique.



Motivation – Why study alpha-two graphs?

Chromatic & Clique Number

It’s not always the case that ω(G) = χ(G).

The gap between ω(G) and χ(G) can be arbitrarily large.

One way to show – Mycielski Construction.

Take a copy of triangle-free G.
Add a vertex z and a vertex yi for every xi ∈ V (G).
For each i, add edges zyi.
For each edge xixj add edges xiyj and xjyi.

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5
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Motivation – Why study alpha-two graphs?

Definition – Graph Minor

Let G and H be graphs, |V (H)| ≤ |V (G)|, and let
V (H) = {v1, v2, . . . , vk}. We say G contains H as a minor if
there are disjoint subsets V1, V2, . . . , Vk of V (G) satisfying the
following:

G[Vi] is connected.

If vivj ∈ E(H), then there is an edge between Vi and Vj .

Alternatively, one can say H can be obtained from G by a
sequence of edge contractions and deletions. We use the
notation G ⪰ H to denote “G contains H as a minor”, or G is
contractible to H.
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Graph Minors – An Example

v1

v2 v3

H G G



Motivation – Hadwiger’s Conjecture

Conjecture 1.0 [Hadwiger, 1946]

Let G be a graph. Then G ⪰ Kχ(G).

True for 1 ≤ χ(G) ≤ 6, otherwise open in general.

Conjecture 1.1 [Plummer, Stiebitz, Toft, 2005]

If G is an alpha-two graph of order n, then G ⪰ K⌈n/2⌉.

Conjecture 1.2 [Seymour, 2016]

If G is an alpha-two graph of order n, then G ⪰ K⌈cn⌉ for
c > 1/3.
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Some Structural Results

Definition – Diameter

The diameter of a graph G is the size of the longest shortest
path between two vertices, i.e. max

x,y∈V (G)
d(x, y).

If G is alpha-two, then diam(G) ≤ 3.

Definition – Biclique

Let G be a graph with vertex set V . We call G a biclique if V
can be partitioned into two sets A and B such that G[A] and
G[B] are cliques.
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Theorem [Ibrahim, 2021]

Let G be a diameter 3 graph. If G is alpha-two, then G is a
biclique.
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Structural Results – Diameter 2

Definition – Claw-Bull-free

A claw is a graph with one vertex x and three pendants
connected to x. A bull is a triangle with two pendants u, v
where u and v have different neighbors.

A graph is
claw-bull-free if it does not contain the claw or the bull as an
induced subgraph.
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Structural Results – Lovász Theta

Definition – Clique Covering Number

A clique cover of a graph G is a partition of V (G) such that
each part induces a clique. The clique cover number, denoted
χ̄(G), is a clique cover of minimum size. Note: χ(Ḡ) = χ̄(G).

Properties – Lovász Number ϑ(G) [Lovász 1979]

Real Number

Efficiently computable in polynomial time [Grötschel,
Lovász, Schrijver, 1981].
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Structural Results – Lovász Theta

Sandwich Theorem [Knuth, 1994]

The efficiently computable ϑ(G) is “sandwiched” between two
known hard problems:

α(G) ≤ ϑ(G) ≤ χ̄(G)

Definition – Perfect Graph

A graph G is perfect if for every induced subgraph H of G,
α(H) = χ̄(H). Since the complement of a perfect graph is
perfect, we can also say ω(H) = χ(H).
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Structural Results – Lovász Theta

Strong Perfect Graph Theorem [C, R, S, T, 2006]

An odd hole (antihole) is an induced cycle (complement of
cycle) of length at least 5. A graph is perfect if and only if it
does not contain an induced odd hole or odd antihole.



Structural Results – Lovász Theta

Theorem [Ibrahim, Larson, 2021]

If α = ϑ = 2 then G is perfect.

Idea: Use the SPGT. Rule out odd holes/antiholes.

α = 2 =⇒ G does not contain an induced Ck, for odd
k > 5.
ϑ = 2 =⇒ G does not contain an induced C5, since
ϑ(C5) > 2 [Lovász 1979].
ϑ(C̄k) > 2 , k odd.

Properties of ϑ

1 If H is an induced subgraph of G then ϑ(H) ≤ ϑ(G).

2 If a graph is vertex transitive: ϑ(G)ϑ(Ḡ) = n.

3 If n is odd: ϑ(Cn) =
n cos(π/n)
1+cos(π/n) .
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Future Work

Conjecture 1.2 [Seymour, 2016]

If G is an alpha-two graph of order n, then G ⪰ K⌈cn⌉ for
c > 1/3.

Plummer, Stiebitz, Toft offhandedly: c = 2/5 from
contracting C5’s

Graduate Student: c = 3/8 using existing results and a
minimum degree argument.
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