New Results on Bootstrap Percolation

Rayan Ibrahim*, Hudson LaFayette, Kevin McCall

VCU Discrete Math Seminar November 1, 2023

* Acknowledgement: Supported in part by The Thomas F. and Kate Miller Jeffress Memorial Trust, Bank of America, Trustee and by National Science Foundation DMS-2204148.

Assumptions

Graphs

The graphs we are working with today are

■ Simple. No loops or multi-edges.

Assumptions

Graphs

The graphs we are working with today are

- Simple. No loops or multi-edges.
- Connected.

Assumptions

Graphs

The graphs we are working with today are

- Simple. No loops or multi-edges.
- Connected.

r-Bootstrap Percolation

• Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.

Example 1
$$(r=2)$$

Example 1
$$(r=2)$$

Example 1
$$(r=2)$$

Example 1
$$(r=2)$$

Example 2
$$(r=2)$$

Example 2
$$(r=2)$$

Example 2
$$(r=2)$$

Example 2
$$(r=2)$$

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.
- If $\langle A_0 \rangle = V(G)$, we say A_0 percolates.

r-Bootstrap Percolation

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.
- If $\langle A_0 \rangle = V(G)$, we say A_0 percolates.

Choosing A_0

Early models incorporate randomness; initial infected vertices are selected with probability p.

r-Bootstrap-Good

• Let m(G, r) be the minimum size of a percolating set.

r-Bootstrap-Good

- Let m(G, r) be the minimum size of a percolating set.
 If |G| > r then r ≤ m(G, r) ≤ n
- If m(G, r) = r then G is r-Bootstrap-Good, or r-BG.

r-Bootstrap-Good

- Let m(G, r) be the minimum size of a percolating set.
 If |G| > r then r ≤ m(G, r) ≤ n
- If m(G, r) = r then G is r-Bootstrap-Good, or r-BG.

• What is the structure of *r*-BG graphs?

• What is the structure of *r*-BG graphs?

- Necessary and sufficient conditions for 2-BG graphs.
- \blacksquare Necessary and sufficient conditions for r-BG graphs.

- What is the structure of *r*-BG graphs?
 - Necessary and sufficient conditions for 2-BG graphs.
 - \blacksquare Necessary and sufficient conditions for *r*-BG graphs.
- Bounds for m(G, r) for particular graph classes.

- What is the structure of *r*-BG graphs?
 - Necessary and sufficient conditions for 2-BG graphs.
 - Necessary and sufficient conditions for *r*-BG graphs.
- Bounds for m(G, r) for particular graph classes.
- What are the minimum and maximum number of rounds to percolate?

- What is the structure of *r*-BG graphs?
 - Necessary and sufficient conditions for 2-BG graphs.
 - \blacksquare Necessary and sufficient conditions for r-BG graphs.
- Bounds for m(G, r) for particular graph classes.
- What are the minimum and maximum number of rounds to percolate?

Degree Conditions

Some sufficient conditions involving the degrees.

- What is the structure of *r*-BG graphs?
 - Necessary and sufficient conditions for 2-BG graphs.
 - \blacksquare Necessary and sufficient conditions for r-BG graphs.
- Bounds for m(G, r) for particular graph classes.
- What are the minimum and maximum number of rounds to percolate?

Degree Conditions

Some sufficient conditions involving the degrees.

•
$$\delta(G) \ge \frac{r-1}{r}n \implies r-\mathrm{BG}.$$

- What is the structure of *r*-BG graphs?
 - Necessary and sufficient conditions for 2-BG graphs.
 - \blacksquare Necessary and sufficient conditions for r-BG graphs.
- Bounds for m(G, r) for particular graph classes.
- What are the minimum and maximum number of rounds to percolate?

Degree Conditions

Some sufficient conditions involving the degrees.

•
$$\delta(G) \ge \frac{r-1}{r}n \implies r$$
-BG.

•
$$\sigma_2(G) \ge n \implies 2\text{-BG}.$$

- What is the structure of *r*-BG graphs?
 - Necessary and sufficient conditions for 2-BG graphs.
 - Necessary and sufficient conditions for *r*-BG graphs.
- Bounds for m(G, r) for particular graph classes.
- What are the minimum and maximum number of rounds to percolate?

Degree Conditions

Some sufficient conditions involving the degrees.

$$\delta(G) \ge \frac{r-1}{r}n \implies r-\mathrm{BG}.$$

• $\sigma_2(G) \ge n \implies 2\text{-BG}.$

... several others

A Necessary Condition Involving Blocks

Definition (Block)

A block in a graph G is a maximal connected subgraph with no cut vertex.

A Necessary Condition Involving Blocks

Definition (Block)

A block in a graph G is a maximal connected subgraph with no cut vertex.

A Necessary Condition Involving Blocks

Definition (Block)

A block in a graph G is a maximal connected subgraph with no cut vertex.

Observations

- Blocks intersect in a cut vertex.
- Blocks are 2-connected, or K₂.

A Necessary Condition Involving Blocks (2-BG)

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

A Necessary Condition Involving Blocks (2-BG)

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Intuition – Cut vertices are bottlenecks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

Proof Outline:

• Let v be a cut vertex and A_0 be a percolating set of size r.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

- Let v be a cut vertex and A_0 be a percolating set of size r.
- Turns out, v is **unique**.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

- Let v be a cut vertex and A_0 be a percolating set of size r.
- Turns out, v is **unique**.
 - v must be adjacent to all of A_0 (nontrivial, generalizable).

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

- Let v be a cut vertex and A₀ be a percolating set of size r.
 Turns out, v is unique.
 - v must be adjacent to all of A_0 (nontrivial, generalizable).
 - For every component C of G v, we have $C \cap A_0 \neq \emptyset$. (nontrivial, generalizable)

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

- Let v be a cut vertex and A₀ be a percolating set of size r.
 Turns out, v is unique.
 - v must be adjacent to all of A_0 (nontrivial, generalizable).
 - For every component C of G v, we have $C \cap A_0 \neq \emptyset$. (nontrivial, generalizable)

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

- Let v be a cut vertex and A_0 be a percolating set of size r.
- Turns out, v is **unique**.
 - v must be adjacent to all of A_0 (nontrivial, generalizable).
 - For every component C of G v, we have $C \cap A_0 \neq \emptyset$. (nontrivial, generalizable)
- The components of G v correspond to blocks.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

- Let v be a cut vertex and A_0 be a percolating set of size r.
- Turns out, v is **unique**.
 - v must be adjacent to all of A_0 (nontrivial, generalizable).
 - For every component C of G v, we have $C \cap A_0 \neq \emptyset$. (nontrivial, generalizable)
- The components of G v correspond to blocks.
- There are at most *r* components, each corresponding to a block.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

The maximum number of blocks is achieved uniquely by $K_{1,r}$ for $r \geq 3$.

Theorem (Ibrahim, LaFayette, McCall '23)

Let $r \ge 2$ and G be a graph with at least r + 1 vertices. If G is r-BG, then G has at most r blocks.

The maximum number of blocks is achieved uniquely by $K_{1,r}$ for $r \geq 3$.

Question: What's the next best (or interesting) upper bound, and what achieves that?

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

If G is locally connected, then G is 2-BG. In particular if G does not have a leaf, then any pair of adjacent vertices percolates.

Conjecture (Bushaw et al. '23)

If G is perfect and its diameter is no more than 2, then G is 2-BG.

Conjecture (Bushaw et al. '23)

If G is perfect and its diameter is no more than 2, then G is 2-BG.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

Proof Outline:

• Two Cases: G is 2-connected or G has 2 blocks.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Two Cases: G is 2-connected or G has 2 blocks.
- If G has 2 blocks: C_5 -free not needed.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Two Cases: G is 2-connected or G has 2 blocks.
- If G has 2 blocks: C_5 -free not needed.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Two Cases: G is 2-connected or G has 2 blocks.
- If G has 2 blocks: C_5 -free not needed.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Two Cases: G is 2-connected or G has 2 blocks.
- If G has 2 blocks: C_5 -free not needed.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

Proof Outline:

• If G is 2-connected, then more work.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- If G is 2-connected, then more work.
- Let $H \subset G$ be a maximal 2-connected, 2-BG subgraph.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- If G is 2-connected, then more work.
- Let $H \subset G$ be a maximal 2-connected, 2-BG subgraph.
- Case work: Either contradict the C_5 -free assumption, or maximality of H.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Let $H \subset G$ be a maximal 2-connected, 2-BG subgraph.
- Case work: Either contradict the C_5 -free assumption, or maximality of H.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Let $H \subset G$ be a maximal 2-connected, 2-BG subgraph.
- Case work: Either contradict the C_5 -free assumption, or maximality of H.

Theorem (Ibrahim, LaFayette, McCall '23)

If G is C_5 -free, has at most two blocks, and its diameter is no more than 2, then G is 2-BG.

- Let $H \subset G$ be a maximal 2-connected, 2-BG subgraph.
- Case work: Either contradict the C_5 -free assumption, or maximality of H.

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Consider r = 2 and diam(G) = 2.

Number of rounds until infection: 2 + 5 = diam(G) + |Y|

Question: What is the maximum number of rounds until percolation?

For arbitrary r and diameter d. (Example: r = 3, d = 4.)

Number of rounds until infection: diam(G) + |Y|

Definition (Detour Diameter)

The detour diameter of a graph G, denoted diam_D(G), is the length of the longest path in G.

Definition (Detour Diameter)

The detour diameter of a graph G, denoted diam_D(G), is the length of the longest path in G.

Theorem (Ibrahim, LaFayette, McCall '23)

If G contains a percolating set which r-percolates in k rounds, then $k \leq \operatorname{diam}_D(G) + 1$.

Definition (Detour Diameter)

The detour diameter of a graph G, denoted diam_D(G), is the length of the longest path in G.

Theorem (Ibrahim, LaFayette, McCall '23)

If G contains a percolating set which r-percolates in k rounds, then $k \leq \operatorname{diam}_D(G) + 1$.

Proof Idea: Partition V(G) into sets S_i where vertices in S_i are infected in round *i*.

Theorem (Ibrahim, LaFayette, McCall '23)

If G contains a percolating set which r-percolates in k rounds, then $k \leq \operatorname{diam}_D(G) + 1$.

Proof Idea: Partition V(G) into sets S_i where vertices in S_i are infected in round i.

Future Directions

- The maximum number of rounds $k \leq \operatorname{diam}_D(G)$ instead of $\operatorname{diam}_D(G) + 1$ (Caterpillars).
- What is m(G, r) when G has other properties, e.g. just diameter 2? Or α(G) = 2?
- A complete characterization of 2-BG graphs?

Future Directions

- The maximum number of rounds $k \leq \operatorname{diam}_D(G)$ instead of $\operatorname{diam}_D(G) + 1$ (Caterpillars).
- What is m(G, r) when G has other properties, e.g. just diameter 2? Or α(G) = 2?
- A complete characterization of 2-BG graphs?

Thank you!

arXiv:2309.13138

Theorem (Ibrahim, LaFayette, McCall '23)

Let G be a connected graph with diameter d. Suppose G contains a set of vertices, A_0 , which percolates with threshold r in k rounds and $|A_0| \leq 2r - 1$. Furthermore, assume that every vertex in A_0 infects some vertex in round 2, i.e., every vertex in A_0 is adjacent to at least one vertex in round 2. Then $k \geq \lceil d/2 \rceil + 1$ and this bound is sharp.

Theorem (Ibrahim, LaFayette, McCall '23)

Let G be a connected graph with a set of vertices A_0 , which percolates in k rounds with percolation threshold r. If $|A_0| = r$, then $k \ge rad(G) + 1$ and this bound is sharp.