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Bootstrap Percolation Process

r-Bootstrap Percolation

Begin with an initial set of ‘infected’ vertices, A0 ⊆ V (G).

In each round, an uninfected vertex v becomes infected if v
is adjacent to at least r infected vertices.

Once infected, vertices remain infected.

The process is finite – the closure of A0, denoted ⟨A0⟩, is
the set of infected vertices when the process finishes.
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The process is finite – the closure of A0, denoted ⟨A0⟩, is
the set of infected vertices when the process finishes.

If ⟨A0⟩ = V (G), we say A0 percolates.

Choosing A0

Early models incorporate randomness; initial infected vertices
are selected with probability p.



Bootstrap Percolation Process

r-Bootstrap Percolation

Begin with an initial set of ‘infected’ vertices, A0 ⊆ V (G).

In each round, an uninfected vertex v becomes infected if v
is adjacent to at least r infected vertices.

Once infected, vertices remain infected.

The process is finite – the closure of A0, denoted ⟨A0⟩, is
the set of infected vertices when the process finishes.

If ⟨A0⟩ = V (G), we say A0 percolates.

Choosing A0

Early models incorporate randomness; initial infected vertices
are selected with probability p.



Bootstrap Percolation Process

r-Bootstrap Percolation

Begin with an initial set of ‘infected’ vertices, A0 ⊆ V (G).

In each round, an uninfected vertex v becomes infected if v
is adjacent to at least r infected vertices.

Once infected, vertices remain infected.

The process is finite – the closure of A0, denoted ⟨A0⟩, is
the set of infected vertices when the process finishes.

If ⟨A0⟩ = V (G), we say A0 percolates.

Choosing A0

Early models incorporate randomness; initial infected vertices
are selected with probability p.



Bootstrap Percolation Process

r-Bootstrap-Good

Let m(G, r) be the minimum size of a percolating set.

If |G| > r then r ≤ m(G, r) ≤ n

If m(G, r) = r then G is r-Bootstrap-Good, or r-BG.
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Paths to Explore

What is the structure of r-BG graphs?

Necessary and sufficient conditions for 2-BG graphs.
Necessary and sufficient conditions for r-BG graphs.

Bounds for m(G, r) for particular graph classes.

What are the minimum and maximum number of rounds
to percolate?

Degree Conditions

Some sufficient conditions involving the degrees.

δ(G) ≥ r−1
r n =⇒ r-BG.

σ2(G) ≥ n =⇒ 2-BG.

... several others
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Blocks intersect in a cut
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Blocks are 2-connected,
or K2.
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A Necessary Condition Involving Blocks (r-BG)

Theorem (Ibrahim, LaFayette, McCall ’23)

Let r ≥ 2 and G be a graph with at least r + 1 vertices. If G is
r-BG, then G has at most r blocks.

Proof Outline:

Let v be a cut vertex and A0 be a percolating set of size r.
Turns out, v is unique.

v must be adjacent to all of A0 (nontrivial, generalizable).

For every component C of G− v, we have C ∩A0 ̸= ∅.
(nontrivial, generalizable)
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Theorem (Bushaw et al. ’23)

If G is locally connected, then G is 2-BG. In particular if G
does not have a leaf, then any pair of adjacent vertices
percolates.
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Let H ⊂ G be a maximal 2-connected, 2-BG subgraph.

Case work: Either contradict the C5-free assumption, or
maximality of H.



A Sufficient Condition (2-BG)

Theorem (Ibrahim, LaFayette, McCall ’23)

If G is C5-free, has at most two blocks, and its diameter is no
more than 2, then G is 2-BG.

Proof Outline:

If G is 2-connected, then more work.

Let H ⊂ G be a maximal 2-connected, 2-BG subgraph.

Case work: Either contradict the C5-free assumption, or
maximality of H.



A Sufficient Condition (2-BG)

Theorem (Ibrahim, LaFayette, McCall ’23)

If G is C5-free, has at most two blocks, and its diameter is no
more than 2, then G is 2-BG.

Proof Outline:

If G is 2-connected, then more work.

Let H ⊂ G be a maximal 2-connected, 2-BG subgraph.

Case work: Either contradict the C5-free assumption, or
maximality of H.



A Sufficient Condition (2-BG)

Theorem (Ibrahim, LaFayette, McCall ’23)

If G is C5-free, has at most two blocks, and its diameter is no
more than 2, then G is 2-BG.

Proof Outline:

Let H ⊂ G be a maximal 2-connected, 2-BG subgraph.
Case work: Either contradict the C5-free assumption, or
maximality of H.

H

w′

w

v′

v

H

w′

w

v′′

v′

v



A Sufficient Condition (2-BG)

Theorem (Ibrahim, LaFayette, McCall ’23)

If G is C5-free, has at most two blocks, and its diameter is no
more than 2, then G is 2-BG.

Proof Outline:

Let H ⊂ G be a maximal 2-connected, 2-BG subgraph.
Case work: Either contradict the C5-free assumption, or
maximality of H.

H

w′

w

v′

v

→

H

w′

w

v′

v



A Sufficient Condition (2-BG)

Theorem (Ibrahim, LaFayette, McCall ’23)

If G is C5-free, has at most two blocks, and its diameter is no
more than 2, then G is 2-BG.

Proof Outline:

Let H ⊂ G be a maximal 2-connected, 2-BG subgraph.
Case work: Either contradict the C5-free assumption, or
maximality of H.

H

w′

w

v′′

v′

v

H

w′

w

v′′

v′

v



Number of Rounds

Question: What is the maximum number of rounds until
percolation?

Consider r = 2 and diam(G) = 2.



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

A0

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

A0
Round: 1

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

Round: 2A0

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

Round: 3A0

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

Round: 4A0

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

Round: 5A0

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

Round: 6A0

x1...

y1 y2 y3 y4 y5



Number of Rounds

Question: What is the maximum number of rounds until
percolation?
Consider r = 2 and diam(G) = 2.

Round: 7A0

x1...

y1 y2 y3 y4 y5



Number of Rounds
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Consider r = 2 and diam(G) = 2.
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Number of Rounds

Question: What is the maximum number of rounds until
percolation?
For arbitrary r and diameter d. (Example: r = 3, d = 4.)

A0 = B1 B2 B3

X

x1

x2

y5

y4

y3

y2

y1
r r r

r − 1

d− 1

Number of rounds until infection: diam(G) + |Y |



Number of Rounds

Definition (Detour Diameter)

The detour diameter of a graph G, denoted diamD(G), is the
length of the longest path in G.

Theorem (Ibrahim, LaFayette, McCall ’23)

If G contains a percolating set which r-percolates in k rounds,
then k ≤ diamD(G) + 1.

Proof Idea: Partition V (G) into sets Si where vertices in Si are
infected in round i.
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Number of Rounds

Theorem (Ibrahim, LaFayette, McCall ’23)

If G contains a percolating set which r-percolates in k rounds,
then k ≤ diamD(G) + 1.

Proof Idea: Partition V (G) into sets Si where vertices in Si are
infected in round i.

Sk Sk−1 S2 S1 = A0

· · ·...



Future Directions

The maximum number of rounds k ≤ diamD(G) instead of
diamD(G) + 1 (Caterpillars).

What is m(G, r) when G has other properties, e.g. just
diameter 2? Or α(G) = 2?

A complete characterization of 2-BG graphs?

Thank you!

arXiv:2309.13138



Future Directions

The maximum number of rounds k ≤ diamD(G) instead of
diamD(G) + 1 (Caterpillars).

What is m(G, r) when G has other properties, e.g. just
diameter 2? Or α(G) = 2?

A complete characterization of 2-BG graphs?

Thank you!

arXiv:2309.13138



Number of Rounds

Theorem (Ibrahim, LaFayette, McCall ’23)

Let G be a connected graph with diameter d. Suppose G
contains a set of vertices, A0, which percolates with threshold r
in k rounds and |A0| ≤ 2r − 1. Furthermore, assume that every
vertex in A0 infects some vertex in round 2, i.e., every vertex in
A0 is adjacent to at least one vertex in round 2. Then
k ≥ ⌈d/2⌉+ 1 and this bound is sharp.

Theorem (Ibrahim, LaFayette, McCall ’23)

Let G be a connected graph with a set of vertices A0, which
percolates in k rounds with percolation threshold r. If |A0| = r,
then k ≥ rad(G) + 1 and this bound is sharp.


